Series till Ad Infinitum part I I II

Calculus Level 4

1 + 1 2 1 4 2 ! 1 8 3 ! + 1 16 4 ! + 1 32 5 ! \large 1+ \dfrac{1}{2} - \dfrac{1}{4\cdot 2!} -\dfrac{1}{8\cdot 3!} + \dfrac{1}{16\cdot 4!} +\dfrac{1}{32\cdot 5!} -\cdots

sin ( 1 4 ) + cos ( 1 4 ) \sin\left(\frac{1}{4}\right ) + \cos \left(\frac{1}{4}\right ) sin ( 1 2 ) + cos ( 1 2 ) \sin\left(\frac{1}{2}\right ) + \cos\left(\frac{1}{2}\right ) tan ( 1 2 ) + cot ( 1 2 ) \tan\left(\frac{1}{2}\right ) + \cot \left(\frac{1}{2}\right ) sin ( 1 3 ) + cos ( 1 3 ) \sin \left(\frac{1}{3}\right ) +\cos\left(\frac{1}{3}\right )

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Caleb Townsend
Mar 14, 2015

The series is the sum of the power series of sin ( x ) \sin(x) and cos ( x ) \cos(x) at x = 1 2 . x = \frac{1}{2}. So the sum is sin ( 1 2 ) + cos ( 1 2 ) \boxed{\sin(\frac{1}{2}) + \cos(\frac{1}{2})}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...