Series with factorials

Algebra Level 3

X = n = 0 ( 2 x ) n ( 1 ) n 2 n ! \large \begin{aligned} X & = \sum_{n=0}^{\infty} \frac{{(2x)}^{n}(-1)^{\left\lfloor \frac{n}{2} \right\rfloor}}{n!}\\ \end{aligned}

Find max ( 100 X ) \lfloor \max(100X)\rfloor .

Notations:


The answer is 141.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ashish Menon
May 29, 2018

X = 1 + 2 x 1 ! 4 x 2 2 ! 8 x 3 3 ! + 16 x 4 4 ! + 32 x 5 5 ! 64 x 6 6 ! 128 x 7 7 ! + = 1 ( 2 x ) 2 2 ! + ( 2 x ) 4 4 ! ( 2 x ) 6 6 ! + + 2 x 1 ! ( 2 x ) 3 3 ! + ( 2 x ) 5 5 ! ( 2 x ) 7 7 ! + = sin ( 2 x ) + cos ( 2 x ) (Taylor series expansion) max(100.X) = 100 2 = 141 \begin{aligned} \text{X} & = 1 + \dfrac{2x}{1!} - \dfrac{4x^2}{2!} - \dfrac{8x^3}{3!} + \dfrac{16x^4}{4!} + \dfrac{32x^5}{5!} - \dfrac{64x^6}{6!} - \dfrac{128x^7}{7!} + \cdots \\ \\ & = 1 - \dfrac{{(2x)}^2}{2!} + \dfrac{{(2x)}^4}{4!} - \dfrac{{(2x)}^6}{6!} + \cdots \\ & \ \ \ \ + \dfrac{2x}{1!} - \dfrac{{(2x)}^3}{3!} + \dfrac{{(2x)}^5}{5!} - \dfrac{{(2x)}^7}{7!} + \cdots \\ \\ & = \sin{(2x)} + \cos{(2x)} \ \color{#20A900}{\text{(Taylor series expansion)}} \\ \\ \therefore \lfloor \text{max(100.X)}\rfloor & = \lfloor 100\sqrt{2} \rfloor \\ \\ & = \color{#3D99F6}{\boxed{141}} \end{aligned}

Chew-Seong Cheong
May 29, 2018

Given that:

X = n = 0 ( 2 x ) n ( 1 ) n 2 n ! = 1 + 2 x 1 ! ( 2 x ) 2 2 ! ( 2 x ) 3 3 ! + ( 2 x ) 4 4 ! + \begin{aligned} X & = \sum_{n=0}^\infty \frac {(2x)^n(-1)^{\left\lfloor \frac n2\right\rfloor}}{n!} = 1 + \frac {2x}{1!} - \frac {(2x)^2}{2!} - \frac {(2x)^3}{3!} + \frac {(2x)^4}{4!} + \cdots \end{aligned}

Consider:

Y = n = 0 ( 2 x i ) n n ! = 1 + 2 x 1 ! i ( 2 x ) 2 2 ! ( 2 x ) 3 3 ! i + ( 2 x ) 4 4 ! + = e 2 x i = cos ( 2 x ) + i sin ( 2 x ) By Euler’s formula \begin{aligned} Y & = \sum_{n=0}^\infty \frac {(2xi)^n}{n!} = 1 + \frac {2x}{1!}i - \frac {(2x)^2}{2!} - \frac {(2x)^3}{3!}i + \frac {(2x)^4}{4!} + \cdots = \color{#3D99F6} e^{2xi} = \cos (2x) + i \sin (2x) & \small \color{#3D99F6} \text{By Euler's formula} \end{aligned}

We note that X = ( Y ) + ( Y ) = cos ( 2 x ) + sin ( 2 x ) X = \Re(Y) + \Im (Y) = \cos (2x) + \sin (2x) , where ( z ) \Re(z) and ( z ) \Im(z) are the real and imaginary parts of complex number z z respectively. Since X = cos ( 2 x ) + sin ( 2 x ) = 2 sin ( 2 x + π 4 ) X = \cos (2x) + \sin (2x) = \sqrt 2 \sin \left(2x + \frac \pi 4\right) . Since max ( sin ( 2 x + π 4 ) ) = 1 \max \left(\sin \left(2x + \frac \pi 4\right)\right) = 1 , max ( X ) = 2 \max (X) = \sqrt 2 and max ( 100 X ) = 141 \lfloor \max(100X ) \rfloor = \boxed{141} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...