Arithmetico geometric series

Algebra Level 3

Find the value of the expression: 2 + 6 4 100 + 2 + 2 × 6 4 99 + 2 + 3 × 6 4 98 + + 2 + 100 × 6 4 \dfrac{2 + 6}{4^{100}} + \dfrac{2 + 2\times6}{4^{99}} + \dfrac{2 + 3\times6}{4^{98}} + \cdots + \dfrac{2 + 100\times6}{4} .

250 150 100 200

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Harry Jones
Dec 27, 2016

2 + 6 4 100 + 2 + 2 6 4 99 + 2 + 3 6 4 98 + + 2 + 100 6 4 \dfrac{2 + 6}{4^{100}} + \dfrac{2 + 2*6}{4^{99}} + \dfrac{2 + 3*6}{4^{98}} + \cdots + \dfrac{2 + 100*6}{4} S = 2 + 6 4 100 + 2 + 2 6 4 99 + 2 + 3 6 4 98 + + 2 + 100 6 4 S=\dfrac{2 + 6}{4^{100}} + \dfrac{2 + 2*6}{4^{99}} + \dfrac{2 + 3*6}{4^{98}} + \cdots + \dfrac{2 + 100*6}{4} S = 2 ( 1 4 100 + 1 4 99 + 1 4 98 + + 1 4 ) + 6 ( 1 4 100 + 2 4 99 + 3 4 98 + + 100 4 ) S=2*(\dfrac{1}{4^{100}} + \dfrac{1}{4^{99}} + \dfrac{1}{4^{98}} + \cdots + \dfrac{1}{4})+6*(\dfrac{1}{4^{100}} + \dfrac{2 }{4^{99}} + \dfrac{3}{4^{98}} + \cdots + \dfrac{100}{4})

S = 2 X + 6 Y S=2X+6Y

Now, X X is a simple G . P . G.P. and Y Y is an A . G . P . A.G.P. .

Y = 1 4 100 + 2 4 99 + 3 4 98 + + 100 4 Y=\dfrac{1}{4^{100}} + \dfrac{2 }{4^{99}} + \dfrac{3}{4^{98}} + \cdots + \dfrac{100}{4}

4 Y = 1 4 99 + 2 4 98 + 3 4 97 + + 100 4Y=\dfrac{1}{4^{99}} + \dfrac{2 }{4^{98}} + \dfrac{3}{4^{97}} + \cdots + 100

Subtracting these two after shifting one place in 4 Y 4Y we get,

3 Y = 1 4 100 + 1 4 99 + 1 4 98 + + 1 4 100 -3Y=\dfrac{1}{4^{100}} + \dfrac{1}{4^{99}} + \dfrac{1}{4^{98}} + \cdots + \dfrac{1}{4}-100

3 Y = X 100 \implies -3Y=X-100

Y = 100 X 3 \implies Y=\dfrac{100-X}{3}

S = 2 X + 6 Y = 2 X + 200 2 X = 200 S=2X+6Y=2X+200-2X=200

Nice solution. +1

Sabhrant Sachan - 4 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...