Serious Series

Calculus Level 5

T ( n ) = 0.75 n 2 1 2 2 + 3 3 + 4 5 2 + 6 3 + (3n terms) \large\mathfrak{T}(n)=\dfrac{0.75n^2}{1-2^2+3^3+4-5^2+6^3+\cdots \text{(3n terms)}}

S ( n ) = 1 T ( n ) + 13 n + 9 9 \large\mathfrak{S}(n)=\dfrac{\frac{1}{\mathfrak{T}(n)}+13n+9}{9}

I = n = 1 ( 1 S ( n ) ) = π α β \large\mathfrak{I}=\displaystyle\sum_{n=1}^{\infty}\left(\dfrac{1}{\mathfrak{S}(n)}\right)=\dfrac{\pi^{\alpha}}{\beta}

S ( α ! + β ) = ? \large\mathfrak{S}(\alpha!+\beta)=\, ?

Details and Assumptions

  • n , α , β Z n,\alpha,\beta\in\mathbb Z and n 1 n\geq 1


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Apr 14, 2016

Denominator of T n : \mathfrak{T}_n: ( 1 + 4 + + ( 3 n 2 ) ) ( 2 2 + 5 2 + + ( 3 n 1 ) 2 ) + 3 3 ( 1 3 + 2 3 + + n 3 ) \color{#D61F06}{(1+4+\cdots+(3n-2))}\\-\color{#3D99F6}{(2^2+5^2+\cdots+(3n-1)^2)}\\+3^3\color{#20A900}{(1^3+2^3+\cdots+n^3)}

= n 2 ( 2 + ( n 1 ) 3 ) + ( r = 1 n ( 3 n 1 ) 2 ) 9 r = 1 n r 2 6 r = 1 n r + r = 1 n 1 + 27 ( ( n 2 ) ( n + 1 ) 2 4 ) =\color{#D61F06}{\frac n2(2+(n-1)3)}+\underbrace{\color{#3D99F6}{\left(\displaystyle\sum_{r=1}^{n}\left(3n-1\right)^2\right)}}_{ 9\displaystyle\sum_{r=1}^{n}r^2-6\displaystyle\sum_{r=1}^{n}r+\displaystyle\sum_{r=1}^{n}1}+27\color{#20A900}{\left(\dfrac{(n^2)(n+1)^2}{4}\right)}

= 3 n 2 ( 9 n 2 + 14 n + 9 ) 4 =\dfrac{3n^2(9n^2+14n+9)}{4}

T ( n ) = 1 9 n 2 + 14 n + 9 \large\mathfrak{T}(n)=\dfrac{1}{9n^2+14n+9} S ( n ) = n 2 + 3 n + 2 \large \mathfrak S(n)=n^2+3n+2

I = n = 1 ( 1 n 2 + 3 n + 2 ) = n = 1 ( 1 n + 1 1 n + 2 ) \large\mathfrak{I}=\displaystyle\sum_{n=1}^{\infty}\left(\dfrac{1}{n^2+3n+2}\right) \\=\displaystyle\sum_{n=1}^{\infty}\left(\dfrac{1}{n+1}-\dfrac{1}{n+2}\right)

( A T e l e s c o p i c S e r i e s ) \mathbf{(A Telescopic Series)}

= 1 2 = π 0 2 \large =\dfrac{1}{2}=\dfrac{\pi^0}{2}

S ( 3 ) = 20 \therefore\huge\mathfrak{S}(3)=\boxed{20}

I was trying to find a reasonable appx. for 1/2 ( pi^2/20 , pi^4/195) . Damn !

Keshav Tiwari - 5 years ago

Great !!perfectly designed question and ans too... will u try this https://brilliant.org/problems/how-fast-u-can-approach/

Suneel Kumar - 5 years, 2 months ago

Log in to reply

Yeah it had been posted many times on brilliant and as usual beautiful brilliant minds provided different beautiful solutions... See here ...

Rishabh Jain - 5 years, 2 months ago
Aakash Khandelwal
Apr 14, 2016

When one finds α = 0 \alpha=0 , heartbeats raise while typing answer.

Absolutely that's why I introduced π \pi there...... :-)

Rishabh Jain - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...