Set of moving last digits

Algebra Level 4

A B C D E L × M L A B C D E \begin{array} { l l l l l l l l } & \color{#3D99F6}A & \color{#3D99F6}B & \color{#3D99F6}C & \color{#3D99F6}D & \color{#3D99F6}E & \color{#D61F06}L \\ \times & & & & & & M \\ \hline & \color{#D61F06}L & \color{#3D99F6}A & \color{#3D99F6}B & \color{#3D99F6}C & \color{#3D99F6}D & \color{#3D99F6}E \\ \end{array}

In the multiplication above, there is a 6-digit positive integer with a last digit L \color{#D61F06}L . If its last digit is shifted to the front of the number, while the other 5 digits remain unchanged, then the resulting number is equal to M M times the original number - where M M is a single-digit positive integer >1.

There are exactly seven different 6-digit integers that exist where this is possible - where M > 1 M>1 - though none of the digits in this problem need to be distinct. (The diagram is just there to help conceptualise the operation of shifting the last digit)

However, one of the seven 6-digit integers is not like the others, and is the odd one out, because it's value of M M is different.

If S S is the sum of all seven of the original 6-digit numbers, and O O is the 6-digit number that is the odd one out.

What is S O \large\dfrac{S}{O} ?


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Jonathan Quarrie
Jun 2, 2017

Each 6-digit integer can be established using the following equation:

L × 100000 + x = M × ( 10 x + L ) \color{#D61F06}L \color{#333333}\times 100000 + \color{#3D99F6}\text{x} \color{#333333}= M \times (10\color{#3D99F6}\text{x} \color{#333333}+ \color{#D61F06}L\color{#333333})

Where x \color{#3D99F6}\text{x} represents the 5 unknown, unchanging digits.


For example, where L = 9 L = \color{#D61F06}9 and M = 4 M = 4

  • 9 00000 + x = 4 ( 10 x + 9 ) \color{#D61F06}9\color{#333333}00000 + \color{#3D99F6}\text{x} \color{#333333}= 4(10\color{#3D99F6}\text{x}\color{#333333}+\color{#D61F06}9\color{#333333})
  • 900000 + x = 40 x + 36 900000 + \color{#3D99F6}\text{x} \color{#333333}= 40\color{#3D99F6}\text{x}\color{#333333}+36
  • 900000 = 39 x + 36 900000 = 39\color{#3D99F6}\text{x}\color{#333333}+36
  • 899964 = 39 x 899964 = 39\color{#3D99F6}\text{x}
  • 23076 = x \color{#3D99F6}23076 \color{#333333}= \color{#3D99F6}\text{x}

So the original 6-digit number is 23076 9 \color{#3D99F6}23076\color{#D61F06}9 . And when multiplied by 4, it becomes 9 23076 \color{#D61F06}9\color{#3D99F6}23076 .


Repeating the above process for all permutations of single-digit integer values for L \color{#D61F06}L and M > 1 M>1 . All valid results produce a 5-digit integer for x \color{#3D99F6}x .

Original x L \color{#3D99F6}x\color{#D61F06}L × \times M = Result L x \color{#D61F06}L\color{#3D99F6}x
23076 9 \color{#3D99F6}23076\color{#D61F06}9 × \times 4 4 = 9 23076 \color{#D61F06}9\color{#3D99F6}23076
20512 8 \color{#3D99F6}20512\color{#D61F06}8 × \times 4 4 = 8 20512 \color{#D61F06}8\color{#3D99F6}20512
17948 7 \color{#3D99F6}17948\color{#D61F06}7 × \times 4 4 = 7 17948 \color{#D61F06}7\color{#3D99F6}17948
15384 6 \color{#3D99F6}15384\color{#D61F06}6 × \times 4 4 = 6 15384 \color{#D61F06}6\color{#3D99F6}15384
14285 7 \color{#20A900}14285\color{#D61F06}7 × \times 5 \color{#20A900}5 = 7 14285 \color{#D61F06}7\color{#20A900}14285
12820 5 \color{#3D99F6}12820\color{#D61F06}5 × \times 4 4 = 5 12820 \color{#D61F06}5\color{#3D99F6}12820
10256 4 \color{#3D99F6}10256\color{#D61F06}4 × \times 4 4 = 4 10256 \color{#D61F06}4\color{#3D99F6}10256

O = 14285 7 O = \color{#20A900}14285\color{#D61F06}7\color{#333333} , because it is the only 6-digit integer from the above set where M = 5 M = \color{#20A900}5 , whereas for all of the others M = 4 M = 4 .

S = 23076 9 S = \color{#3D99F6}23076\color{#D61F06}9 + 20512 8 \color{#3D99F6}20512\color{#D61F06}8 + 17948 7 \color{#3D99F6}17948\color{#D61F06}7 + 15384 6 \color{#3D99F6}15384\color{#D61F06}6 + 14285 7 \color{#20A900}14285\color{#D61F06}7 + 12820 5 \color{#3D99F6}12820\color{#D61F06}5 + 10256 4 = 1142856 \color{#3D99F6}10256\color{#D61F06}4 \color{#333333}= 1142856


S O = 1142856 142857 = 8 \dfrac{S}{O} = \dfrac{1142856}{\color{#20A900}142857} = \large\boxed{8}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...