Set of OSK 2016 2

Algebra Level pending

{ x 2 + 2 y 2 = 3 z x + y + z = t \begin{cases} x^2 + 2y^2 = 3z \\ x+y+z=t \end{cases}

Let x , y , z x,y,z and t t be real numbers. Find the value of t t such that the solution ( x , y , z ) (x,y,z) to the system of the equations above is unique.


Source : OSK 2016.
8 9 \frac89 9 8 -\frac98 3 2 \frac32 7 8 \frac78 8 9 -\frac89

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Zee Ell
Sep 27, 2016

x 2 + 2 y 2 = 3 z x^2 + 2y^2 = 3z

x + y + z = t x+y+z=t

3 x + 3 y + 3 z = 3 t 3x + 3y + 3z = 3t

3 x + 3 y + x 2 + 2 y 2 = 3 t 3x+3y + x^2 + 2y^2 = 3t

Let's complete the two squares on the LHS:

( x 2 + 3 x + ( 3 2 ) 2 ) ( 3 2 ) 2 + ( 2 y 2 + 3 y + ( 3 2 2 ) 2 ) ( 3 2 2 ) 2 = 3 t (x^2 + 3x + ( \frac {3}{2} )^2 ) - ( \frac {3}{2} )^2 + (2y^2 + 3y + ( \frac {3}{2 \sqrt {2} } )^2 ) - ( \frac {3}{2 \sqrt {2} } )^2 = 3t

( x + 3 2 ) 2 + ( 2 y + 3 2 2 ) 2 9 4 9 8 = 3 t (x + \frac {3}{2} )^2 + ( \sqrt{2}y + \frac {3}{2 \sqrt {2} } )^2 - \frac {9}{4} - \frac {9}{8} = 3t

( x + 3 2 ) 2 + ( 2 y + 3 2 2 ) 2 27 8 ) = 3 t (x + \frac {3}{2} )^2 + ( \sqrt{2}y + \frac {3}{2 \sqrt {2} } )^2 - \frac {27}{8} ) = 3t ... (i)

Now, each of the squares has a minimum value of 0, hence the minimum value of:

• 3t is: 27 8 \text {• 3t is: } - \frac {27}{8}

• t is: 27 8 ÷ 3 = 9 8 \text {• t is: } - \frac {27}{8} ÷ 3 = \boxed {- \frac {9}{8}}

This minimum value of t gives us a unique (x, y, z) triplet:

x = 3 2 x = - \frac{3}{2}

y = 4 3 y = - \frac{4}{3}

z = ( 3 2 ) 2 + 2 × ( 4 3 ) 2 = 9 4 + 2 × 16 9 = 209 36 z = (- \frac{3}{2})^2 + 2 × (- \frac{4}{3} )^2 = \frac{9}{4} + 2 × \frac{16}{9} = \frac{209}{36}

It is easy to see, that if:

t < 9 8 , then we have no solution (since we cannot go lower, than the minimum) \text {• } t < - \frac {9}{8} \text { , then we have no solution (since we cannot go lower, than the minimum) }

t < 9 8 , then we have no solution (since we cannot go lower, than the minimum) \text {• } t < - \frac {9}{8} \text { , then we have no solution (since we cannot go lower, than the minimum) }

t > 9 8 , then we have an infinite number of solutions \text {• } t > - \frac {9}{8} \text { , then we have an infinite number of solutions }

(the transformed (separate linear (bijective) transformations) of the x and y coordinates of the (infinite number of) points of a circle):

Let:

m = x + 3 2 m = x + \frac {3}{2}

n = 2 y + 3 2 2 n = \sqrt{2}y + \frac {3}{2 \sqrt {2} }

r 2 = 3 t + 27 8 r^2 = 3t + \frac {27}{8}

Then (i) can be written as:

m 2 + n 2 = r 2 m^2 + n^2 = r^2

which is an equation of a circle on the (m, n) plane with infinite number of (m,n) solutions for each value of t.

For each (of the infinite number) of (m, n) points, we can get a single (x, y) pair (and from that, a single z)).

Hence, we have an infinite number of (x, y, z) solutions for each value of t > -9/8.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...