Set of points in complex plane

Algebra Level pending

Let S S be the set of all points in the complex plane such that ( 1 + 1 z ) 4 = 1 \left(1+\dfrac 1z \right)^4 =1 . then the points of S S are

vertices of right angle triangle vertices of equilateral triangle vertices of kite vertices of rectangle collinear

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 14, 2020

( 1 + 1 z ) 4 = 1 = e 2 k π i for k = 0 , 1 , 2 , 3 \begin{aligned} \left(1+\frac 1z\right)^4 & = 1 = e^{2k\pi i} & \small \blue{\text{for }k=0,1,2,3} \end{aligned}

1 + 1 z = e k π 2 i = { 1 k = 0 i k = 1 1 k = 2 i k = 3 \begin{aligned} 1 + \frac 1z & = e^{\frac {k\pi} 2i} = \begin{cases} 1 & k = 0 \\ i & k = 1 \\ -1 & k = 2 \\ -i & k = 3 \end{cases} \end{aligned}

1 z = { 0 i 1 2 1 i z = { undefined 1 i 1 = 1 2 i 2 1 2 = 1 2 0 i 1 1 + i = 1 2 + i 2 \dfrac 1z = \begin{cases} 0 \\ i - 1 \\ - 2 \\ -1 -i \end{cases} \implies z = \begin{cases} \infty & \small \red{\text{undefined}} \\ \dfrac 1{i-1} & = -\dfrac 12 - \dfrac i2 \\ \dfrac 12 & = -\dfrac 12 - 0i \\ - \dfrac 1{1+i} & = - \dfrac 12 + \dfrac i2 \end{cases}

The three roots are colinear on the real line of 1 2 -\dfrac 12 .

Well presented

Mahdi Raza - 1 year ago

Log in to reply

Glad that you like it. Please upvote.

Chew-Seong Cheong - 1 year ago

Log in to reply

Done! .....

Mahdi Raza - 1 year ago

There are four fourth roots of 1 1 . These are 1 , 1 , i , i 1, -1, i, -i where i = 1 i = \sqrt{-1}

Solving the equation using each of these roots we get :

\newline ( A ) 1 + 1 z (A)\;\;1 +\Large\frac{1}{z} = 1 No complex z possible. = 1 \Rightarrow \text{No complex } z \text{ possible.}

\newline ( B ) 1 + 1 z (B)\;\;1 + \Large\frac{1}{z} = 1 z = 1 2 = -1\Rightarrow z = \Large\frac{1}{-2} z = 1 2 \Rightarrow \boxed{z = -\frac{1}{2}}

\newline ( C ) 1 + 1 z (C)\;\;1 + \Large\frac{1}{z} = i z = 1 i 1 = i\Rightarrow z = \Large\frac{1}{i - 1} = i + 1 i 2 1 = \Large\frac{i + 1}{i^2 - 1} = i + 1 2 = \Large\frac{i + 1}{-2} z = 1 2 i 2 \Rightarrow\boxed{z = \frac{-1}{2} - \frac{i}{2}}

\newline ( D ) 1 + 1 z (D)\;\;1 + \Large\frac{1}{z} = i z = 1 i 1 = -i\Rightarrow z = \Large\frac{1}{-i - 1} = i 1 ( i 2 1 ) = \Large\frac{i - 1}{-(i^2 - 1)} = i 1 2 = \Large\frac{i - 1}{2} z = 1 2 + i 2 \Rightarrow\boxed{z = \frac{-1}{2} + \frac{i}{2}}

We see that all the solutions have same real part. So they must lie on a line. Hence they are collinear.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...