If the area of the maximal regular heptagon which can be inscribed in the unit square is , where and are positive integers, submit .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Suppose that p = sin 1 4 1 π = cos 7 3 π . If we put z = e 7 3 π i , then z + z − 1 = 2 p and 0 = z 7 + 1 = ( z + 1 ) ( z 6 − z 5 + z 4 − z 3 + z 2 − z + 1 ) = ( z + 1 ) z 3 [ z 3 + z − 3 − z 2 − z − 2 + z + z − 1 − 1 ] = ( z + 1 ) z 3 [ ( z + z − 1 ) 3 − ( z + z − 1 ) 2 − 2 ( z + z − 1 ) − 1 ] = ( z + 1 ) z 3 ( 8 p 3 − 4 p 2 − 4 p + 1 ) so that 8 p 3 − 4 p 2 − 4 p + 1 = 0 . If we now put t = 2 8 1 π , so that p = sin 2 t , then 4 sin t ( cos 7 t + cos t + sin 5 t ) = 4 sin t cos 7 t + 4 sin t sin 5 t + sin 2 t = 2 ( sin 8 t − sin 6 t ) + 2 ( cos 4 t − cos 6 t ) + 2 sin 2 t = 2 ( − sin 6 t + cos 4 t + sin 2 t ) = 2 ( sin 1 0 t − sin 6 t + sin 2 t ) = 2 [ ( 1 6 p 5 − 2 0 p 3 + 5 p ) − ( 3 p − 4 p 3 ) + p ] = 3 2 p 5 − 3 2 p 3 + 6 p = ( 8 p 3 − 4 p 2 − 4 p + 1 ) ( 4 p 2 + 2 p − 1 ) + 1 = 1 using the fact that 1 4 t = 2 1 π , so that sin 8 t = cos 6 t and cos 4 t = sin 1 0 t , and also using the identities sin 3 u ≡ 3 sin u − 4 sin 3 u and sin 5 u ≡ 1 6 sin 5 u − 2 0 sin 3 u + 5 sin u .
If we consider the desired heptagon, it is clear that it is situated symmetrically with respect to the top-left/bottom-right diagonal, and so key angles are of size 5 t , t and 7 t = 4 1 π . Thus the side x of the heptagon is such that 1 = x ( cos 7 t + cos t + sin 5 t ) and hence we deduce that x = 4 sin t . Thus the area of the heptagon is 7 × 2 1 × x × 2 1 x cot 7 1 π = 4 7 x 2 cot 7 1 π = 2 8 sin 2 t cot 7 1 π = 2 8 sin 2 2 8 1 π cot 7 1 π so that a = 2 8 , b = 7 , making the answer 3 5 .