Seven in Four

Geometry Level 5

If the area of the maximal regular heptagon which can be inscribed in the unit square is a sin 2 π a cot π b a\sin^2\dfrac{\pi}{a}\cot\dfrac{\pi}{b} , where a a and b b are positive integers, submit a + b a+b .


The answer is 35.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Feb 23, 2021

Suppose that p = sin 1 14 π = cos 3 7 π p = \sin \tfrac{1}{14}\pi = \cos\tfrac{3}{7}\pi . If we put z = e 3 π i 7 z = e^{\frac{3\pi i}{7}} , then z + z 1 = 2 p z + z^{-1} = 2p and 0 = z 7 + 1 = ( z + 1 ) ( z 6 z 5 + z 4 z 3 + z 2 z + 1 ) = ( z + 1 ) z 3 [ z 3 + z 3 z 2 z 2 + z + z 1 1 ] = ( z + 1 ) z 3 [ ( z + z 1 ) 3 ( z + z 1 ) 2 2 ( z + z 1 ) 1 ] = ( z + 1 ) z 3 ( 8 p 3 4 p 2 4 p + 1 ) \begin{aligned} 0 \; = \; z^7 + 1 & = \; (z + 1)(z^6 - z^5 + z^4 - z^3 + z^2 - z + 1) \; = \; (z+1)z^3\big[z^3 + z^{-3} - z^2 - z^{-2} + z + z^{-1} - 1\big] \\ & = \; (z + 1)z^3\big[(z + z^{-1})^3 - (z + z^{-1})^2 - 2(z + z^{-1}) - 1\big] \; =\; (z + 1)z^3(8p^3 - 4p^2 - 4p + 1) \end{aligned} so that 8 p 3 4 p 2 4 p + 1 = 0 8p^3 - 4p^2 - 4p + 1 = 0 . If we now put t = 1 28 π t = \tfrac{1}{28}\pi , so that p = sin 2 t p = \sin2t , then 4 sin t ( cos 7 t + cos t + sin 5 t ) = 4 sin t cos 7 t + 4 sin t sin 5 t + sin 2 t = 2 ( sin 8 t sin 6 t ) + 2 ( cos 4 t cos 6 t ) + 2 sin 2 t = 2 ( sin 6 t + cos 4 t + sin 2 t ) = 2 ( sin 10 t sin 6 t + sin 2 t ) = 2 [ ( 16 p 5 20 p 3 + 5 p ) ( 3 p 4 p 3 ) + p ] = 32 p 5 32 p 3 + 6 p = ( 8 p 3 4 p 2 4 p + 1 ) ( 4 p 2 + 2 p 1 ) + 1 = 1 \begin{aligned} 4\sin t(\cos7t + \cos t + \sin 5t) & = \; 4\sin t \cos7t + 4\sin t \sin5t + \sin2t \; =\; 2(\sin8t - \sin6t) + 2(\cos4t - \cos6t) + 2\sin2t \\ & = \; 2(-\sin6t + \cos4t + \sin2t) \; =\; 2(\sin10t - \sin6t + \sin2t) \\ & = \; 2\big[(16p^5 - 20p^3 + 5p) - (3p - 4p^3) + p\big] \; =\; 32p^5 - 32p^3 + 6p \\ & = \; (8p^3 - 4p^2 - 4p + 1)(4p^2 + 2p - 1) + 1 \; = \; 1 \end{aligned} using the fact that 14 t = 1 2 π 14t = \tfrac12\pi , so that sin 8 t = cos 6 t \sin8t = \cos6t and cos 4 t = sin 10 t \cos4t = \sin10t , and also using the identities sin 3 u 3 sin u 4 sin 3 u \sin3u \equiv 3\sin u - 4\sin^3 u and sin 5 u 16 sin 5 u 20 sin 3 u + 5 sin u \sin5u \equiv 16\sin^5 u - 20\sin^3 u + 5\sin u .

If we consider the desired heptagon, it is clear that it is situated symmetrically with respect to the top-left/bottom-right diagonal, and so key angles are of size 5 t 5t , t t and 7 t = 1 4 π 7t = \tfrac14\pi . Thus the side x x of the heptagon is such that 1 = x ( cos 7 t + cos t + sin 5 t ) 1 \; = \; x(\cos7t + \cos t + \sin5t) and hence we deduce that x = 4 sin t x = 4\sin t . Thus the area of the heptagon is 7 × 1 2 × x × 1 2 x cot 1 7 π = 7 4 x 2 cot 1 7 π = 28 sin 2 t cot 1 7 π = 28 sin 2 1 28 π cot 1 7 π 7 \times \tfrac12\times x \times \tfrac12x\cot\tfrac17\pi \; =\; \tfrac74x^2\cot\tfrac17\pi \; = \;28\sin^2t\cot\tfrac{1}{7}\pi \; = \; 28\sin^2\tfrac{1}{28}\pi \cot\tfrac17\pi so that a = 28 a=28 , b = 7 b=7 , making the answer 35 \boxed{35} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...