Sextuple Integral

Calculus Level 4

Evaluate the expression

0 1 ( 6 ! 5 ! + 0 x 5 ( 6 ! 4 ! + 0 x 4 ( 6 ! 3 ! + 0 x 3 ( 6 ! 2 ! + 0 x 2 ( 6 ! 1 ! + 0 x 1 6 ! 0 ! d x 0 ) d x 1 ) d x 2 ) d x 3 ) d x 4 ) d x 5 \int_0^1\left(\frac{6!}{5!}+\int_0^{x_5}\left(\frac{6!}{4!}+\int_0^{x_4}\left(\frac{6!}{3!}+\int_0^{x_3}\left(\frac{6!}{2!}+\int_0^{x_2}\left(\frac{6!}{1!}+\int_0^{x_1}\frac{6!}{0!}dx_0\right)dx_1\right)dx_2\right)dx_3\right)dx_4\right)dx_5


The answer is 63.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Alex Burgess
May 21, 2019

Looking at a 6 ! n ! \frac{6!}{n!} term, we integrate this ( 6 n ) (6-n) times. When integrating we divide by the power of next power of x x produce, so in these ( 6 n ) (6-n) integrations we end up dividing by ( 6 n ) ! (6-n)! . Hence, 6 n 0 1 6 ! n ! = 6 ! n ! ( 6 n ) ! = ( 6 n ) \iiint\limits_{6-n} \int_0^1{\frac{6!}{n!}} = \frac{6!}{n!(6-n)!} = \binom{6}{n} .

Our result is hence ( 6 5 ) + ( 6 4 ) + ( 6 3 ) + ( 6 2 ) + ( 6 1 ) + ( 6 0 ) = ( c = 0 6 ( 6 c ) ) ( 6 6 ) = 2 6 1 = 63 \binom{6}{5} + \binom{6}{4} + \binom{6}{3} + \binom{6}{2} + \binom{6}{1} + \binom{6}{0} = \left (\sum_{c=0}^6 \binom{6}{c} \right ) - \binom{6}{6} = 2^6 - 1 = 63

Very nice!

Chris Lewis - 2 years ago

0 1 ( 0 f ( 0 e ( 0 d ( 0 c ( 0 b 6 ! 0 ! d a + 6 ! 1 ! ) d b + 6 ! 2 ! ) d c + 6 ! 3 ! ) d d + 6 ! 4 ! ) d e + 6 ! 5 ! ) d f 63 \int_0^1 \left(\int_0^f \left(\int_0^e \left(\int_0^d \left(\int_0^c \left(\int_0^b \frac{6!}{0!} \, da+\frac{6!}{1!}\right) \, db+\frac{6!}{2!}\right) \, dc+\frac{6!}{3!}\right) \, dd+\frac{6!}{4!}\right) \, de+\frac{6!}{5!}\right) \, df \Rightarrow 63

720 b , 360 c 2 + 720 c , 120 d 3 + 360 d 2 + 360 d , 30 e 4 + 120 e 3 + 180 e 2 + 120 e , f 6 + 6 f 5 + 15 f 4 + 20 f 3 + 15 f 2 + 6 f 720 b,\,360 c^2+720 c,\,120 d^3+360 d^2+360 d,\,30 e^4+120 e^3+180 e^2+120 e,\,f^6+6 f^5+15 f^4+20 f^3+15 f^2+6 f

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...