Evaluate the expression
∫ 0 1 ( 5 ! 6 ! + ∫ 0 x 5 ( 4 ! 6 ! + ∫ 0 x 4 ( 3 ! 6 ! + ∫ 0 x 3 ( 2 ! 6 ! + ∫ 0 x 2 ( 1 ! 6 ! + ∫ 0 x 1 0 ! 6 ! d x 0 ) d x 1 ) d x 2 ) d x 3 ) d x 4 ) d x 5
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Very nice!
∫ 0 1 ( ∫ 0 f ( ∫ 0 e ( ∫ 0 d ( ∫ 0 c ( ∫ 0 b 0 ! 6 ! d a + 1 ! 6 ! ) d b + 2 ! 6 ! ) d c + 3 ! 6 ! ) d d + 4 ! 6 ! ) d e + 5 ! 6 ! ) d f ⇒ 6 3
7 2 0 b , 3 6 0 c 2 + 7 2 0 c , 1 2 0 d 3 + 3 6 0 d 2 + 3 6 0 d , 3 0 e 4 + 1 2 0 e 3 + 1 8 0 e 2 + 1 2 0 e , f 6 + 6 f 5 + 1 5 f 4 + 2 0 f 3 + 1 5 f 2 + 6 f
Problem Loading...
Note Loading...
Set Loading...
Looking at a n ! 6 ! term, we integrate this ( 6 − n ) times. When integrating we divide by the power of next power of x produce, so in these ( 6 − n ) integrations we end up dividing by ( 6 − n ) ! . Hence, 6 − n ∭ ∫ 0 1 n ! 6 ! = n ! ( 6 − n ) ! 6 ! = ( n 6 ) .
Our result is hence ( 5 6 ) + ( 4 6 ) + ( 3 6 ) + ( 2 6 ) + ( 1 6 ) + ( 0 6 ) = ( ∑ c = 0 6 ( c 6 ) ) − ( 6 6 ) = 2 6 − 1 = 6 3