(P)i am so over this integral

Calculus Level 4

π ÷ 0 e 3 x sin ( x ) x d x = ? \large \pi \div \int_0^\infty \frac{e^{-\sqrt3 x} \sin(x)}{x} \, dx = \ ?


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tanishq Varshney
Nov 15, 2015

Apply Laplace transformation and that's it!!

L ( sin t t ) = s 1 s 2 + 1 d s \large{L \left(\frac{\sin t}{t}\right)=\displaystyle \int _{s}^{\infty} \frac{1}{s^2+1} ds}

L ( sin t t ) = arccot ( s ) \large{L \left(\frac{\sin t}{t} \right)=\text{arccot}(s)} ............ ( 1 (1

Also

L ( sin t t ) = 0 e s t sin t t d t \large{L \left(\frac{\sin t}{t}\right)=\displaystyle \int _{0}^{\infty} e^{-st}\frac{\sin t}{t} dt} .........….. ( 2 (2

From ( 1 (1 and ( 2 (2

0 e s t sin t t d t = arccot ( s ) \large{\displaystyle \int _{0}^{\infty} e^{-st}\frac{\sin t}{t} dt=\text{arccot}(s)}

Here s = 3 s=\sqrt{3}

So we get π 6 \large{\boxed{\frac{\pi}{6}}}


Another method can be by using differentiation under integral assuming

I ( a ) = 0 e a x sin x x d x \large{I(a)=\displaystyle \int^{\infty}_{0} e^{ax}\frac{\sin x}{x}dx}

I feel like this method is, as they say, like nuking an anthill.

Jake Lai - 5 years, 6 months ago

Can u give a link for Laplace transformation? I just don't know.

Shyambhu Mukherjee - 5 years, 6 months ago

Log in to reply

Here

Tanishq Varshney - 5 years, 6 months ago

Log in to reply

Thanks u very much.

Shyambhu Mukherjee - 5 years, 6 months ago
Jake Lai
Nov 16, 2015

Using the Maclaurin expansion sin x = k = 0 ( 1 ) k x 2 k + 1 ( 2 k + 1 ) ! \displaystyle \sin x = \sum_{k=0}^\infty \frac{(-1)^kx^{2k+1}}{(2k+1)!} , we can reform the given integral like so:

0 e 3 x sin x x d x = 0 e 3 x k = 0 ( 1 ) k x 2 k ( 2 k + 1 ) ! d x = k = 0 ( 1 ) k ( 2 k + 1 ) ! 0 e 3 x x 2 k d x \int_0^\infty e^{-\sqrt 3x}\frac{\sin x}{x} \ dx = \int_0^\infty e^{-\sqrt 3x}\sum_{k=0}^\infty \frac{(-1)^kx^{2k}}{(2k+1)!} \ dx = \sum_{k=0}^\infty \frac{(-1)^k}{(2k+1)!} \int_0^\infty e^{-\sqrt 3x}x^{2k} \ dx

By the substitution t = 3 x t = \sqrt 3x , we have

0 e 3 x x 2 k d x = 0 e t ( t 3 ) 2 k d t 3 = ( 1 3 ) 2 k + 1 0 e t t 2 k d t \int_0^\infty e^{-\sqrt 3x}x^{2k} \ dx = \int_0^\infty e^{-t}\left( \frac{t}{\sqrt 3} \right)^{2k} \ \frac{dt}{\sqrt 3} = \left( \frac{1}{\sqrt 3} \right)^{2k+1}\int_0^\infty e^{-t}t^{2k} \ dt

Since it is known that 0 e t t n d t = n ! \displaystyle \int_0^\infty e^{-t}t^n \ dt = n! for nonnegative integers n n , we thus have

k = 0 ( 1 ) k ( 2 k + 1 ) ! 0 e 3 x x 2 k d x = k = 0 ( 1 ) k ( 2 k + 1 ) ! ( 1 3 ) 2 k + 1 0 e t t 2 k d t = k = 0 ( 1 ) k ( 1 / 3 ) 2 k + 1 ( 2 k ) ! ( 2 k + 1 ) ! = k = 0 ( 1 ) k ( 1 / 3 ) 2 k + 1 2 k + 1 \begin{aligned} \sum_{k=0}^\infty \frac{(-1)^k}{(2k+1)!} \int_0^\infty e^{-\sqrt 3x}x^{2k} \ dx &= \sum_{k=0}^\infty \frac{(-1)^k}{(2k+1)!} \left( \frac{1}{\sqrt 3} \right)^{2k+1}\int_0^\infty e^{-t}t^{2k} \ dt \\ &= \sum_{k=0}^\infty \frac{(-1)^k(1/\sqrt 3)^{2k+1}(2k)!}{(2k+1)!} \\ &= \sum_{k=0}^\infty \frac{(-1)^k(1/\sqrt 3)^{2k+1}}{2k+1} \end{aligned}

We recognise this familiar form as the series expansion of the arctangent, namely that tan 1 x = k = 0 ( 1 ) k x 2 k + 1 2 k + 1 \displaystyle \tan^{-1} x = \sum_{k=0}^\infty \frac{(-1)^kx^{2k+1}}{2k+1} . Hence, we obtain

k = 0 ( 1 ) k ( 1 / 3 ) 2 k + 1 2 k + 1 = tan 1 1 3 = π 6 \sum_{k=0}^\infty \frac{(-1)^k(1/\sqrt 3)^{2k+1}}{2k+1} = \tan^{-1} \frac{1}{\sqrt 3} = \frac{\pi}{6}

and so

π ÷ 0 e 3 x sin x x d x = π ÷ π 6 = 6 \pi \div \int_0^\infty e^{-\sqrt 3x}\frac{\sin x}{x} \ dx = \pi \div \frac{\pi}{6} = \boxed{6}

Your solution was beautiful but I was stuck in recognizing the series of arctan how did u find that?

Righved K - 5 years, 6 months ago

Log in to reply

We have that d x d y d y d x = 1 \dfrac{dx}{dy} \dfrac{dy}{dx} = 1 from the chain rule. If we use x = tan y x = \tan y then sec 2 y d y d x = 1 \sec^2 y \dfrac{dy}{dx} = 1 and so

d d x tan 1 x = 1 sec 2 tan 1 x = 1 1 + tan 2 tan 1 x = 1 1 + x 2 \frac{d}{dx} \tan^{-1} x = \frac{1}{\sec^2 \tan^{-1} x} = \frac{1}{1+\tan^2 \tan^{-1} x} = \frac{1}{1+x^2}

which stems from the fact that sec 2 x = 1 + tan 2 x \sec^2 x = 1+\tan^2 x .

Now, using that 1 1 + x 2 = n = 0 ( 1 ) n x 2 n \displaystyle \frac{1}{1+x^2} = \sum_{n=0}^\infty (-1)^nx^{2n} (geometric series), we have

d d x tan 1 x d x = n = 0 ( 1 ) n x 2 n d x = n = 0 ( 1 ) n x 2 n d x = n = 0 ( 1 ) n x 2 n + 1 2 n + 1 \int \frac{d}{dx} \tan^{-1} x \ dx = \int \sum_{n=0}^\infty (-1)^nx^{2n} \ dx = \sum_{n=0}^\infty (-1)^n \int x^{2n} \ dx = \sum_{n=0}^\infty (-1)^n \frac{x^{2n+1}}{2n+1}

But, on the other hand, using the fundamental theorem of calculus we also have

d d x tan 1 x d x = tan 1 x + C \int \frac{d}{dx} \tan^{-1} x \ dx = \tan^{-1} x + C

where C C is a constant of integration. Equation the two expressions obtained, we get n = 0 ( 1 ) n x 2 n + 1 2 n + 1 = tan 1 x + C \displaystyle \sum_{n=0}^\infty (-1)^n \frac{x^{2n+1}}{2n+1} = \tan^{-1} x + C , which when evaluated at x = 0 x = 0 gives 0 = 0 + C 0 = 0 + C , implying that C = 0 C = 0 .

Hence, we finally have

tan 1 x = n = 0 ( 1 ) n x 2 n + 1 2 n + 1 \tan^{-1} x = \sum_{n=0}^\infty (-1)^n \frac{x^{2n+1}}{2n+1}

However, this is true only for x 2 = x 2 < 1 |-x^2| = x^2 < 1 . Fortunately, using the fact that tan 1 ( 1 x ) = π 2 tan 1 x \tan^{-1}\left(\dfrac{1}{x}\right) = \dfrac{\pi}{2} - \tan^{-1} x , we can extend the series obtained to all x R x \in \mathbb{R} .

Jake Lai - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...