Shad-ircles

Geometry Level 2

In the diagram, the eight circles are placed at a distance of 1. They have a common centre and have radii of 1 , 2 , 3 , 8 1, 2, 3, \ldots 8 . What is the ratio of the orange areas to the blue areas?

8 : 7 8 : 7 7 : 8 7 : 8 1 : 1 1 : 1 9 : 7 9 : 7

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mahdi Raza
Feb 23, 2020

Orange Areas \textcolor{#EC7300}{\text{Orange Areas}}

Sum of Orange Areas = ( π 8 2 π 7 2 ) + ( π 6 2 π 5 2 ) + ( π 4 2 π 3 2 ) + ( π 2 2 π 1 2 ) = π ( 8 2 7 2 + 6 2 5 2 + 4 2 3 2 + 2 2 1 2 ) = π ( 36 ) \begin{aligned} \textcolor{#EC7300}{\text{Sum of Orange Areas}} &= (\pi8^2 - \pi7^2) + (\pi6^2 - \pi5^2) + (\pi4^2 - \pi3^2) + (\pi2^2 - \pi1^2) \\ &= \pi(8^2 - 7^2 + 6^2 - 5^2 + 4^2 - 3^2 + 2^2 - 1^2) \\ &= \pi(36) \end{aligned}


Blue Areas \textcolor{#3D99F6}{\text{Blue Areas}}

Sum of Blue Areas = ( π 7 2 π 6 2 ) + ( π 5 2 π 4 2 ) + ( π 3 2 π 2 2 ) + ( π 1 2 ) = π ( 7 2 6 2 + 5 2 4 2 + 3 2 2 2 + 1 2 ) = π ( 28 ) \begin{aligned} \textcolor{#3D99F6}{\text{Sum of Blue Areas}} &= (\pi7^2 - \pi6^2) + (\pi5^2 - \pi4^2) + (\pi3^2 - \pi2^2) + (\pi1^2) \\ &= \pi(7^2 - 6^2 + 5^2 - 4^2 + 3^2 - 2^2 + 1^2) \\ &= \pi(28) \end{aligned}

OR \text{OR}

Sum of Blue Areas = Area of Bigger circle Orange Areas = π ( 64 ) π ( 36 ) = π ( 28 ) \begin{aligned} \textcolor{#3D99F6}{\text{Sum of Blue Areas}} &= \text{Area of Bigger circle} - \textcolor{#EC7300}{\text{Orange Areas}} \\ &= \pi(64) - \pi(36) \\ &= \pi(28) \end{aligned}


Orange Areas Blue Areas = π ( 36 ) π ( 28 ) = 9 7 \therefore \frac{\textcolor{#EC7300}{\text{Orange Areas}}}{\textcolor{#3D99F6}{\text{Blue Areas}}} = \frac{\pi(36)}{\pi(28)} = \boxed{\frac{9}{7}}

Easier way my opinion:

sq.: 1 , 4, 9 , 16 , 25 , 36 , 49, 64

Blue area : 1 + (9-4) + (25-16) + (49 - 36) = 28

Red area : 64 - 28 = 36

36:28

9 : 7

himeth hollu - 1 year, 3 months ago
Chew-Seong Cheong
Feb 23, 2020

Let the areas of blue and orange regions be A b A_b and A o A_o respectively. Then we have:

A b = π ( 1 2 2 2 + 3 2 4 2 + 5 2 6 2 + 7 2 ) = π ( n = 1 7 n 2 2 n = 1 3 ( 2 n ) 2 ) = π ( 7 ( 8 ) ( 15 ) 6 2 × 4 × 3 ( 4 ) ( 7 ) 6 ) = 28 π \begin{aligned} A_b & = \pi \left(1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + 7^2 \right) \\ & = \pi \left( \sum_{n=1}^7 n^2 - 2\sum_{n=1}^3 (2n)^2 \right) \\ & = \pi \left(\frac {7(8)(15)}6 - 2 \times 4 \times \frac {3(4)(7)}6 \right) \\ & = 28 \pi \end{aligned}

A o = π ( 1 2 + 2 2 3 2 + 4 2 5 2 + 6 2 7 2 + 8 2 ) = A b + 8 2 π = 28 π + 64 π = 36 π \begin{aligned} A_o & = \pi \left(\blue{- 1^2 + 2^2 - 3^2 + 4^2 - 5^2 + 6^2 - 7^2} + 8^2 \right) \\ & = \blue{- A_b} + 8^2 \pi = -28 \pi + 64 \pi = 36 \pi \end{aligned}

Therefore, A o : A b = 36 π : 28 π = 9 : 7 A_o : A_b = 36 \pi : 28 \pi = \boxed{9:7} .

Great solution especially subtracting A b A_{b} !

Mahdi Raza - 1 year, 3 months ago

Glad that you like it.

Chew-Seong Cheong - 1 year, 3 months ago

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...