Shaded fraction of a square

Level 2

A line from the lower left corner is connected exactly to the half of upper side. Express the answer as a decimal number. (it's not mine - it's a famous social media problem)


The answer is 0.3333333333333333333.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tomáš Hauser
Jun 29, 2018

β = 4 5 χ = arctan ( a a 2 ) = arctan ( 2 a a ) = arctan ( 2 ) α = 18 0 β arctan ( 2 ) = 18 0 4 5 arctan ( 2 ) = 13 5 arctan ( 2 ) a sin α = b sin β b = a × sin β sin α = a × sin ( 45 ) sin ( 135 arctan ( 2 ) ) a sin α = c sin χ c = a × sin χ sin α = a × sin ( arctan ( 2 ) ) sin ( 135 arctan ( 2 ) ) s = a + b + c 2 = a + a × sin ( 45 ) sin ( 135 arctan ( 2 ) ) + a × sin ( arctan ( 2 ) ) sin ( 135 arctan ( 2 ) ) 2 s = a × sin ( 135 arctan ( 2 ) ) + a × sin ( 45 ) + a × sin ( arctan ( 2 ) ) 2 × sin ( 135 arctan ( 2 ) ) s = a × ( sin ( 135 arctan ( 2 ) ) + sin ( 45 ) + sin ( arctan ( 2 ) ) ) 2 × sin ( 135 arctan ( 2 ) ) a × 2.55 1.897 a × 1.34422773 S Δ = s × ( s a ) × ( s b ) × ( s c ) S Δ a × 1.34422773 × ( a × 1.34422773 a ) × ( a × 1.34422773 a × sin ( 45 ) sin ( 135 arctan ( 2 ) ) ) × ( a × 1.34422773 a × sin ( arctan ( 2 ) ) sin ( 135 arctan ( 2 ) ) ) S Δ a × 1.34422773 × ( a × ( 1.34422773 1 ) ) × ( a × ( 1.34422773 0.7454 ) ) × ( a × ( 1.34422773 0.9428 ) ) S Δ a 4 × 1.34422773 × 0.34422773 × 0.59882773 × 0.40142773 S Δ a 2 × 0.33351394... S Δ = . 1 3 × a 2 S = a 2 S Δ S = 1 3 × a 2 a 2 = 1 3 × a 2 × 1 a 2 = 1 3 \begin{array}{l} \beta = {45^ \circ }\\ \chi = \arctan \left( {\frac{a}{{\frac{a}{2}}}} \right) = \arctan \left( {\frac{{2a}}{a}} \right) = \arctan \left( 2 \right)\\ \alpha = {180^ \circ } - \beta - \arctan \left( 2 \right) = {180^ \circ } - {45^ \circ } - \arctan \left( 2 \right) = {135^ \circ } - \arctan \left( 2 \right)\\ \frac{a}{{\sin \alpha }} = \frac{b}{{\sin \beta }} \Rightarrow b = \frac{{a \times \sin \beta }}{{\sin \alpha }} = \frac{{a \times \sin \left( {{{45}^ \circ }} \right)}}{{\sin \left( {{{135}^ \circ } - \arctan \left( 2 \right)} \right)}}\\ \frac{a}{{\sin \alpha }} = \frac{c}{{\sin \chi }} \Rightarrow c = \frac{{a \times \sin \chi }}{{\sin \alpha }} = \frac{{a \times \sin \left( {\arctan \left( 2 \right)} \right)}}{{\sin \left( {{{135}^ \circ } - \arctan \left( 2 \right)} \right)}}\\ s = \frac{{a + b + c}}{2} = \frac{{a + \frac{{a \times \sin \left( {{{45}^ \circ }} \right)}}{{\sin \left( {{{135}^ \circ } - \arctan \left( 2 \right)} \right)}} + \frac{{a \times \sin \left( {\arctan \left( 2 \right)} \right)}}{{\sin \left( {{{135}^ \circ } - \arctan \left( 2 \right)} \right)}}}}{2}\\ s = \frac{{a \times \sin \left( {{{135}^ \circ } - \arctan \left( 2 \right)} \right) + a \times \sin \left( {{{45}^ \circ }} \right) + a \times \sin \left( {\arctan \left( 2 \right)} \right)}}{{2 \times \sin \left( {{{135}^ \circ } - \arctan \left( 2 \right)} \right)}}\\ s = \frac{{a \times \left( {\sin \left( {{{135}^ \circ } - \arctan \left( 2 \right)} \right) + \sin \left( {{{45}^ \circ }} \right) + \sin \left( {\arctan \left( 2 \right)} \right)} \right)}}{{2 \times \sin \left( {{{135}^ \circ } - \arctan \left( 2 \right)} \right)}} \sim a \times \frac{{2.55}}{{1.897}} \sim a \times 1.34422773\\ {S_\Delta } = \sqrt {s \times \left( {s - a} \right) \times \left( {s - b} \right) \times \left( {s - c} \right)} \\ {S_\Delta } \sim \sqrt {a \times 1.34422773 \times \left( {a \times 1.34422773 - a} \right) \times \left( {a \times 1.34422773 - \frac{{a \times \sin \left( {{{45}^ \circ }} \right)}}{{\sin \left( {{{135}^ \circ } - \arctan \left( 2 \right)} \right)}}} \right) \times \left( {a \times 1.34422773 - \frac{{a \times \sin \left( {\arctan \left( 2 \right)} \right)}}{{\sin \left( {{{135}^ \circ } - \arctan \left( 2 \right)} \right)}}} \right)} \\ {S_\Delta } \sim \sqrt {a \times 1.34422773 \times \left( {a \times \left( {1.34422773 - 1} \right)} \right) \times \left( {a \times \left( {1.34422773 - 0.7454} \right)} \right) \times \left( {a \times \left( {1.34422773 - 0.9428} \right)} \right)} \\ {S_\Delta } \sim \sqrt {{a^4} \times 1.34422773 \times 0.34422773 \times 0.59882773 \times 0.40142773} \\ {S_\Delta } \sim {a^2} \times 0.33351394...\\ {S_\Delta } \stackrel{\textstyle.}{=} \frac{1}{3} \times {a^2}\\ S = {a^2}\\ \frac{{{S_\Delta }}}{S} = \frac{{\frac{1}{3} \times {a^2}}}{{{a^2}}} = \frac{1}{3} \times {a^2} \times \frac{1}{{{a^2}}} = \frac{1}{3} \end{array}

That's too complicated! It can be solved efficiently by observing similar triangles.

Vaibhav Priyadarshi - 2 years, 11 months ago

Well, I didn't see it, so I chose an alternative approach.

Tomáš Hauser - 2 years, 11 months ago
Marta Reece
Jun 25, 2018

The blue triangle is similar to the triangle above it.

Since its base is twice as large, its height is also twice as large.

The sum of the two heights is equal to the side of the square a a . Divide that in a ration 1:2 and you get the height of the blue triangle to be 2 3 a \frac23 a .

Area of the triangle is therefore A = 1 2 2 3 a a = a 2 3 A=\frac12 \cdot \frac 23 a\cdot a=\frac{a^2}3 .

The ratio is then a 2 3 : a 2 = 1 3 0.3333 \frac{a^2}3:a^2=\frac13\approx\boxed{0.3333}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...