Shifting the numbers, part 4

Logic Level 5

A 1 A 2 A 3 A n 1 A n A 3 A n 1 A n A 1 A 2 = 12 17 \frac{\overline{A_1A_2A_3\ldots A_{n-1}A_n}}{\overline{A_3\ldots A_{n-1}A_nA_1A_2}}=\frac{12}{17}

What is the smallest value of n > 6 n>6 such that there exist solutions to the above equation?

Remark : A 1 A 2 A 3 A n 1 A n \overline{A_1A_2A_3\ldots A_{n-1}A_n} is a n n -digit number. When n = 6 n=6 , there exist solutions to the above equation. Try it !


This question is part of the set Shifting the numbers .


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chan Lye Lee
Nov 10, 2015

Let x = A 1 A 2 x=\overline{A_1A_2} and y = A 3 A 4 A n 1 A n y=\overline{A_3A_4\ldots A_{n-1}A_n} . This means that A 1 A 2 A 3 A n 1 A n A 3 A n 1 A n A 1 A 2 = 12 17 \displaystyle \frac{\overline{A_1A_2A_3\ldots A_{n-1}A_n}}{\overline{A_3\ldots A_{n-1}A_nA_1A_2}}=\frac{12}{17} is equivalent to 1 0 n 2 x + y 100 y + x = 12 17 \displaystyle \frac{10^{n-2}x+y}{100y+x}=\frac{12}{17} which implies that y x = 17 ( 1 0 n 2 ) 12 1183 \displaystyle \frac{y}{x}=\frac{17(10^{n-2})-12}{1183} .

Since x x is a 2-digit number, 1183 gcd ( 17 ( 1 0 n 2 ) 12 , 1183 ) < 100 \displaystyle \frac{1183}{\gcd(17(10^{n-2})-12, 1183)}<100 . Note that 1183 = 7 ( 1 3 2 ) 1183 = 7(13^2) . Now x { 7 , 13 , 91 } x \in \{7,13,91\} and hence gcd ( 17 ( 1 0 n 2 ) 12 , 1183 ) = 169 , 91 \displaystyle \gcd(17(10^{n-2})-12, 1183)=169, 91 and 13 13 respectively. This means that 17 ( 1 0 n 2 ) 12 ( m o d 169 ) \displaystyle 17(10^{n-2})\equiv 12 \pmod{169} , 17 ( 1 0 n 2 ) 12 ( m o d 91 ) \displaystyle 17(10^{n-2})\equiv 12 \pmod{91} or 17 ( 1 0 n 2 ) 12 ( m o d 13 ) \displaystyle 17(10^{n-2})\equiv 12 \pmod{13} .

Suppose x = 13 x=13 . Then 17 ( 1 0 n 2 ) 12 ( m o d 91 ) \displaystyle 17(10^{n-2})\equiv 12 \pmod{91} . This means that 17 ( 1 0 n ) 12 × 9 17 ( m o d 91 ) \displaystyle 17(10^{n})\equiv 12\times 9 \equiv 17 \pmod{91} . Thus 1 0 n 1 ( m o d 91 ) \displaystyle 10^n \equiv 1 \pmod{91} . By checking, 1 0 n ≢ 1 ( m o d 91 ) \displaystyle 10^n \not \equiv 1 \pmod{91} for n 5 n\le 5 and 1 0 6 1 ( m o d 91 ) \displaystyle 10^6 \equiv 1 \pmod{91} . Hence, 1 0 6 k 1 ( m o d 91 ) \displaystyle 10^{6k} \equiv 1 \pmod{91} . The desired value of n n is 12 \color{#3D99F6}{12} .

Suppose x = 91 x=91 . Similar argument leads to the same answer.

Suppose x = 7 x=7 . Similar argument leads to 1 0 n 1 ( m o d 169 ) \displaystyle 10^n \equiv 1 \pmod{169} , which means that the smallest value of n n is 78.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...