Shifting the numbers, part 5

A 1 A 2 A 3 A n 1 A n A 2 A 3 A n 1 A n A 1 = 12 17 \frac{\overline{A_1A_2A_3\ldots A_{n-1}A_n}}{\overline{A_2A_3\ldots A_{n-1}A_nA_1}}=\frac{12}{17}

What is the smallest value of n n such that there exists solutions to the above equation?

Remark : You may try a related problem here .


This question is part of the set Shifting the numbers .


The answer is 34.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chan Lye Lee
Nov 10, 2015

Let x = A 1 x={A_1} and y = A 2 A 3 A n 1 A n y=\overline{A_2A_3\ldots A_{n-1}A_n} . This means that A 1 A 2 A 3 A n 1 A n A 2 A n 1 A n A 1 = 12 17 \displaystyle \frac{\overline{A_1A_2A_3\ldots A_{n-1}A_n}}{\overline{A_2\ldots A_{n-1}A_nA_1}}=\frac{12}{17} is equivalent to 1 0 n 1 x + y 10 y + x = 12 17 \displaystyle \frac{10^{n-1}x+y}{10y+x}=\frac{12}{17} which implies that y x = 17 ( 1 0 n 1 ) 12 103 \displaystyle \frac{y}{x}=\frac{17(10^{n-1})-12}{103} .

Since 103 is a prime number, 17 ( 1 0 n 1 ) 12 \displaystyle 17(10^{n-1})-12 is a multiple of 103. This means that 17 ( 1 0 n 1 ) 12 ( m o d 103 ) \displaystyle 17(10^{n-1})\equiv 12 \pmod{103} . Now 17 ( 1 0 n ) 120 17 ( m o d 103 ) \displaystyle 17(10^{n})\equiv 120 \equiv 17 \pmod{103} . Thus 1 0 n 1 ( m o d 103 ) \displaystyle 10^n \equiv 1 \pmod{103} .

Note that ϕ ( 103 ) = 102 = ( 2 ) ( 3 ) ( 17 ) \displaystyle\phi (103)=102= (2)(3)(17) and hence 1 0 102 1 ( m o d 103 ) \displaystyle 10^{102} \equiv 1 \pmod{103} . Now, 1 0 n 1 ( m o d 103 ) \displaystyle 10^n \equiv 1 \pmod{103} if n 102 \displaystyle n \big| 102 . By checking, 1 0 n ≢ 1 ( m o d 103 ) \displaystyle 10^n \not \equiv 1 \pmod{103} for n { 2 , 3 , 6 , 17 } n \in \{2,3,6,17\} . This means that 1 0 n ≢ 1 ( m o d 103 ) \displaystyle 10^n \not \equiv 1 \pmod{103} for n 33 n \le 33 . Finally, 1 0 34 1 ( m o d 103 ) \displaystyle 10^{34} \equiv 1 \pmod{103} . Hence, 1 0 34 k 1 ( m o d 103 ) \displaystyle 10^{34k} \equiv 1 \pmod{103} . The desired value of n n is 34 \color{#3D99F6}{34} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...