Summation!

Geometry Level 5

m = 1 6 csc ( ω + ( m 1 ) π 4 ) csc ( ω + m π 4 ) = 4 2 \large \sum_{m=1}^{6}\csc\left(\omega+\frac{(m-1)\pi}{4}\right)\csc\left(\omega+\frac{m\pi}{4}\right)=4\sqrt{2} For 0 < ω < π 3 0<\omega<\frac{\pi}{3} , find r = 1 7 tan 2 ( 3 r ω 4 ) \sum_{r=1}^{7}\tan^{2}(\frac{3r\omega}{4})


The answer is 35.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aditya Sky
Mar 21, 2016

Say S = m = 1 6 csc ( ω + ( m 1 ) π 4 ) ) csc ( ω + m π 4 ) S\,=\,\large \sum_{m=1}^{6}\csc\left(\omega+\frac{(m-1)\pi}{4})\right)\csc\left(\omega+\frac{m\pi}{4}\right) . Plugging in the values of m m and then writing all the six terms :- T 1 = 2 sin ( ω ) [ sin ( ω ) + cos ( ω ) ] T 2 = 2 cos ( ω ) [ sin ( ω ) + cos ( ω ) ] T 3 = 2 cos ( ω ) [ cos ( ω ) sin ( ω ) ] T_1\,=\,\frac{\sqrt2}{\sin(\omega)[\sin(\omega)+\cos(\omega)]}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,T_2\,=\,\frac{\sqrt2}{\cos(\omega)[\sin(\omega)+\cos(\omega)]} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, T_3\,=\,\frac{\sqrt2}{\cos(\omega)[\cos(\omega)-\sin(\omega)]}
T 4 = 2 sin ( ω ) [ sin ( ω ) cos ( ω ) ] T 5 = 2 sin ( ω ) [ sin ( ω ) + cos ( ω ) ] T 6 = 2 cos ( ω ) [ sin ( ω ) + cos ( ω ) ] T_4\,=\,\frac{\sqrt2}{\sin(\omega)[\sin(\omega)-\cos(\omega)]} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, T_5\,=\,\frac{\sqrt2}{\sin(\omega)[\sin(\omega)+\cos(\omega)]}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,T_6\,=\,\frac{\sqrt2}{\cos(\omega)[\sin(\omega)+\cos(\omega)]} Now, S = i = 1 6 T i = ( T 1 + T 4 ) + ( T 2 + T 4 ) + ( T 5 + T 6 ) = ( ( 2 2 cos ( 2 ω ) ) + ( 2 2 cos ( 2 ω ) ) + ( 2 2 sin ( 2 ω ) ) ) S = 2 2 sin ( 2 ω ) 4 2 = 2 2 sin ( 2 ω ) sin ( 2 ω ) = 1 2 ω = π 12 S\,=\, \sum_{i=1}^{6}T_i \, = (T_1\,+\,T_4) \,+\, (T_2\,+\,T_4) \,+\, (T_5\,+\,T_6) \,= \, \left ( \left ( -\frac{2\sqrt2}{\cos(2\omega)} \right ) \,+\, \left ( \frac{2\sqrt2}{\cos(2\omega)} \right ) \,+\, \left ( \frac{2\sqrt2}{\sin(2\omega)} \right ) \right ) \, \Rightarrow\ S\,=\,\frac{2\sqrt2}{\sin(2\omega)} \Rightarrow\ 4\sqrt2 \,=\frac{2\sqrt2}{\sin(2\omega)} \Rightarrow\sin(2\omega)=\frac{1}{2} \Rightarrow\omega\,=\,\frac{\pi}{12}

Now, r = 1 7 tan 2 ( 3 r ω 4 ) = r = 1 7 tan 2 ( r π 16 ) = r = 1 7 1 cos ( r π 8 ) 1 + cos ( r π 8 ) \sum_{r=1}^{7}\tan^{2}\left (\frac{3r\omega}{4}\right )\,=\,\sum_{r=1}^{7}\tan^{2}\left (r \frac{\pi}{16} \right )\,=\, \sum_{r=1}^{7}\frac{1-\cos(\frac{r\pi}{8})}{1+\cos(\frac{r\pi}{8})}

= ( ( 1 cos ( π 8 ) 1 + cos ( π 8 ) + 1 cos ( 3 π 8 ) 1 + cos ( 3 π 8 ) + 1 cos ( 5 π 8 ) 1 + cos ( 5 π 8 ) + 1 cos ( 7 π 8 ) 1 + cos ( 7 π 8 ) ) Adding these four terms and further simplifying gives 28 ) + ( ( 1 cos ( 2 π 8 ) 1 + cos ( 2 π 8 ) + 1 cos ( 4 π 8 ) 1 + cos ( 4 π 8 ) + 1 cos ( 6 π 8 ) 1 + cos ( 6 π 8 ) ) 7 ) =\left ( \underbrace{\left ( \frac{1-\cos(\frac{\pi}{8})}{1+\cos(\frac{\pi}{8})}\,+\, \frac{1-\cos(\frac{3\pi}{8})}{1+\cos(\frac{3\pi}{8})} \,+\, \frac{1-\cos(5\frac{\pi}{8})}{1+\cos(5\frac{\pi}{8})} \,+ \frac{1-\cos(\frac{7\pi}{8})}{1+\cos(\frac{7\pi}{8})} \right )}_\text{Adding these four terms and further simplifying gives 28} \right ) \,+\, \left ( \underbrace{\left ( \frac{1-\cos(\frac{2\pi}{8})}{1+\cos(\frac{2\pi}{8})}\,+\, \frac{1-\cos(\frac{4\pi}{8})}{1+\cos(\frac{4\pi}{8})} \,+\, \frac{1-\cos(\frac{6\pi}{8})}{1+\cos(\frac{6\pi}{8})} \right )}_{7} \right )

28 + 7 = 35 28\,+\,7\,=\,35

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...