A calculus problem by Rohith M.Athreya

Calculus Level 3

e e 2 ( ln t ) 2 d t \displaystyle \large \int_{e}^{e^{2}} (\ln t)^{2} \, dt

Find the value of the closed form of the above integral to 2 decimal places.


If you are looking for more such twisted questions, Twisted problems for JEE aspirants is for you!


The answer is 12.06.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Relevant wiki: Integration Tricks

given integral is e e 2 ( l n t ) 2 d t \displaystyle \large \int_{e}^{e^2} (lnt)^2 dt

let e x = t e^x=t now it becomes 1 2 ( x 2 ) e x d x \displaystyle \large \int_{1}^{2} (x^2) e^x dx

also we have e x ( f ( x ) + f ( x ) ) d x = e x ( f ( x ) ) + C \displaystyle \large \int e^x(f(x)+f'(x))dx=e^x(f(x))+C

the given integral can be manipulated as

1 2 ( x 2 ) e x d x = 1 2 ( x 2 + 2 x ) e x d x 1 2 ( 2 x + 2 ) e x d x + 1 2 ( 2 ) e x d x \displaystyle \large \int_{1}^{2} (x^2) e^x dx= \int_{1}^{2} (x^2+2x) e^x dx- \int_{1}^{2} (2x+2) e^x dx+ \int_{1}^{2} (2) e^x dx

by the above property this simplifies to

( ( x 2 2 x + 2 ) e x ) 1 2 = 2 e 2 e \displaystyle \large \left((x^2-2x+2)e^x\right)_1^2=2e^2-e

Relevant wiki: Differentiation Under the Integral Sign

I = e e 2 ln 2 t d t Let t = e x , d t = e x d x = 1 2 x 2 e x d x = 1 2 2 e a x a 2 d x where a = 1 = 2 a 2 1 2 e a x d x = 2 a 2 [ e a x a ] 1 2 = a [ x e a x a e a x a 2 ] 1 2 = x 2 e a x a x e a x a 2 x 2 e a x a 2 + 2 x e a x a 3 1 2 Putting back a = 1 = x 2 e x x e x x 2 e x + 2 x e x 1 2 = x e x 1 2 = 2 e 2 e 12.06 \begin{aligned} I & = \int_e^{e^2} \ln^2 t \ dt & \small \color{#3D99F6} \text{Let } t = e^x, \ dt = e^x \ dx \\ & = \int_1^2 x^2 e^x \ dx \\ & = \int_1^2 \frac {\partial^2 e^{ax}}{\partial a^2} \ dx & \small \color{#3D99F6} \text{where }a = 1 \\ & = \frac {\partial^2}{\partial a^2} \int_1^2 e^{ax} \ dx \\ & = \frac {\partial^2}{\partial a^2} \left[ \frac {e^{ax}}a \right]_1^2 \\ & = \frac {\partial}{\partial a} \left[ \frac {xe^{ax}}a - \frac {e^{ax}}{a^2} \right]_1^2 \\ & = \frac {x^2e^{ax}}a - \frac {xe^{ax}}{a^2} - \frac {x^2e^{ax}}{a^2} + \frac {2xe^{ax}}{a^3} \bigg|_1^2 & \small \color{#3D99F6} \text{Putting back }a = 1 \\ & = x^2e^x - xe^x - x^2e^x + 2xe^x \bigg|_1^2 \\ & = xe^x \bigg|_1^2 \\ & = 2e^2 - e \approx \boxed{12.06} \end{aligned}

Ky Liow
Feb 21, 2017

Use integration by parts twice to get the answer:

e e 2 ( ln t ) 2 d t = e e 2 1 ( ln t ) 2 d t \int_{e}^{e^2} (\ln t)^2 dt = \int_{e}^{e^2} 1 (\ln t)^2 dt

Let u = ( ln t ) 2 u = (\ln t)^2 and d v = d t dv=dt

Then d u = 2 ln t t du = \frac{2 \ln t}{t} and v = t v = t

Hence, e e 2 ( ln t ) 2 d t = [ t ( ln t ) 2 ] e e 2 e e 2 2 ln t d t \int_{e}^{e^2} (\ln t)^2 dt = \Big[t (\ln t)^2 \Big]_{e}^{e^2} - \int_{e}^{e^2} 2 \ln t dt

= 4 e 2 e 2 e e 2 ln t d t = 4e^2 - e - 2 \int_{e}^{e^2} \ln t dt

Integrate e e 2 ln t d t \int_{e}^{e^2} \ln t dt by parts again:

Let u = ln t u = \ln t and d v = d t dv = dt

Then d u = 1 t d t du = \frac{1}{t} dt and v = t v = t

Hence, e e 2 ln t d t = [ t ln t ] e e 2 e e 2 d t = 2 e 2 e e 2 + e = e 2 \int_{e}^{e^2} \ln t dt = \Big[t \ln t \Big]_{e}^{e^2} - \int_{e}^{e^2} dt = 2 e^2 - e - e^2 + e = e^2

Hence again, e e 2 ( ln t ) 2 d t \int_{e}^{e^2} (\ln t)^2 dt

= 4 e 2 e 2 ( e 2 ) = 4e^2 - e - 2(e^2)

= 2 e 2 e =2e^2 - e

= 12.06 = \boxed{12.06} to 2 decimal places.

Prakhar Bindal
Feb 3, 2017

A Pretty simple one .

Integrate by parts using ln^2(t) as first function and 1 as second one.

And again integrate by parts using ln(t) as first function and 1 as second one

to get e(2e-1)

Even better integrate by parts with lnt as one function and lnt as the other you get the same primitive with just one step.

Anirudh Chandramouli - 4 years, 4 months ago

Log in to reply

yep,precisely

Rohith M.Athreya - 4 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...