Let a < b < c be a primitive Pythagoras triplet.
Find the smallest possible value of c such that there are exactly 32 solutions of ( a , b , c ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
There is actually a smaller solution: 29641625. See my solution for a full explanation, but the short version is that the smallest integer satisfying this condition is c = p 1 b 1 p 2 b 2 ⋯ p r b r where all p k are primes of the form 4 n + 1 and ( b 1 + 1 ) ( b 2 + 1 ) ⋯ ( b r + 1 ) = 6 4 . Your solution satisfies this condition, but 5 3 ⋅ 1 3 ⋅ 1 7 ⋅ 2 9 ⋅ 3 7 is smaller.
Log in to reply
No. Not all the resultant triangles are primitive which is a requirement of the problem.
7 1 6 0 0 7 7 2 9 4 9 6 1 3 4 9 8 6 4 2 0 3 9 1 7 5 2 7 9 1 8 3 3 3 0 8 8 2 1 6 3 4 7 8 4 0 0 4 5 2 1 7 5 3 4 9 0 3 0 4 7 5 5 8 2 6 0 0 6 3 2 2 3 8 4 6 9 9 5 1 7 5 7 5 9 6 8 2 5 8 9 8 4 6 0 0 1 0 2 3 7 6 0 0 1 1 2 1 9 1 7 5 1 1 5 8 1 5 7 5 1 2 5 4 3 4 0 0 1 3 5 1 0 4 2 5 1 4 7 8 0 6 0 0 1 5 3 1 5 4 0 0 1 5 9 0 2 3 4 3 1 6 5 3 4 4 2 5 1 7 1 0 2 9 4 4 1 7 6 1 7 0 1 7 1 8 4 5 2 6 0 0 1 8 7 5 8 2 2 4 1 8 9 8 7 8 9 7 1 9 5 6 1 5 7 5 2 0 0 7 4 9 7 6 2 0 3 5 7 4 1 6 2 0 5 2 7 2 6 4 2 9 6 3 2 9 7 6 2 9 6 3 2 6 4 7 2 9 6 1 0 8 7 3 2 9 5 7 1 4 0 0 2 9 5 0 9 8 5 6 2 9 4 8 0 3 1 3 2 9 4 3 6 8 2 5 2 9 2 9 4 7 0 4 2 9 2 3 3 3 0 4 2 9 1 1 1 1 7 5 2 8 9 5 9 5 1 3 2 8 8 0 4 4 0 0 2 8 6 5 1 6 0 0 2 8 2 4 7 1 7 5 2 7 8 1 7 5 7 5 2 7 4 3 6 4 0 0 2 7 2 8 5 4 0 0 2 6 8 5 6 8 2 5 2 6 3 8 3 6 0 0 2 5 6 9 3 5 7 5 2 5 3 7 8 4 2 5 2 5 0 1 4 8 2 4 2 4 6 0 1 6 0 0 2 4 2 0 9 8 1 7 2 3 8 3 8 3 4 4 2 3 1 9 7 5 7 5 2 2 9 5 1 1 4 3 2 2 7 6 1 4 9 6 2 2 2 7 0 4 0 0 2 1 8 0 8 7 4 3 2 1 5 4 5 3 3 7 2 1 3 8 3 5 7 7 2 9 6 4 1 6 2 5 2 9 6 4 1 6 2 5 2 9 6 4 1 6 2 5 2 9 6 4 1 6 2 5 2 9 6 4 1 6 2 5 2 9 6 4 1 6 2 5 2 9 6 4 1 6 2 5 2 9 6 4 1 6 2 5 2 9 6 4 1 6 2 5 2 9 6 4 1 6 2 5 2 9 6 4 1 6 2 5 2 9 6 4 1 6 2 5 2 9 6 4 1 6 2 5 2 9 6 4 1 6 2 5 2 9 6 4 1 6 2 5 2 9 6 4 1 6 2 5 2 9 6 4 1 6 2 5 2 9 6 4 1 6 2 5 2 9 6 4 1 6 2 5 2 9 6 4 1 6 2 5 2 9 6 4 1 6 2 5 2 9 6 4 1 6 2 5 2 9 6 4 1 6 2 5 2 9 6 4 1 6 2 5 2 9 6 4 1 6 2 5 2 9 6 4 1 6 2 5 2 9 6 4 1 6 2 5 2 9 6 4 1 6 2 5 2 9 6 4 1 6 2 5 2 9 6 4 1 6 2 5 2 9 6 4 1 6 2 5 2 9 6 4 1 6 2 5 1 1 1 2 5 1 1 2 5 1 1 2 5 1 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 1 2 5 1 1 2 5 1 1 2 5 1 1 1
Log in to reply
Ah, I totally missed the primitive condition! My mistake.
I missed the condition that the Pythagorean triple be primitive. I'll leave my solution below, anyway -- there are two shorter hypotenuses if you remove the primitive condition: 29,641,625 and 32,846,125.
Let n be the number of ways to write our number c as the sum of two squares of positive integers (ignoring order ). Then we compute n using the following steps:
Since we want n = 3 2 , either B = 6 3 , 6 4 , 6 5 , depending on a . Since we wish to minimize c , assume that there are no prime factors of the form 4 k + 3 .
You missed the requirement of primitive right triangles.
Problem Loading...
Note Loading...
Set Loading...
N.B., the list of such triangles was not requested as part of the solution.
The answer is the product of the first 6 4 n + 1 primes: 5 , 1 3 , 1 7 , 2 9 , 3 7 , 4 1 . The primitive Pythagorean triangle hypotenuse always is a product of such primes and the multiplicity of a given hypotenuse is 2 n − 1 where is the number of distinct factors in the factorization in the hypotenuse's length.
This integer sequence supplies the answer and states the size of the solution set of a primitive Pythagorean triangle hypotenuse value.
Here is the list of such triangles, even though that list was not required for the problem's solution: 8 2 2 6 9 6 1 5 4 7 8 6 3 1 8 4 0 3 4 4 4 2 0 6 3 7 7 5 0 3 1 8 1 7 6 3 6 5 8 3 3 7 3 8 3 0 2 4 8 0 7 3 5 7 6 8 7 0 7 7 7 6 1 0 4 0 0 9 8 3 1 2 1 1 8 5 8 4 1 3 9 0 8 3 8 4 1 4 3 9 9 2 7 3 1 5 3 6 8 4 0 7 1 6 1 6 2 6 9 7 1 7 5 9 8 5 0 4 1 9 4 1 2 1 8 3 2 1 1 7 3 0 3 3 2 1 5 6 1 8 6 4 2 2 4 6 9 4 9 6 2 3 2 8 1 1 7 6 2 4 5 4 4 3 4 3 2 6 3 9 4 4 8 7 2 7 8 2 7 7 8 4 2 8 3 5 3 2 6 4 2 8 5 9 0 4 7 3 2 9 7 3 7 8 9 7 3 0 4 7 3 1 8 4 3 1 1 1 4 7 7 6 3 2 8 9 8 6 4 7 3 3 4 1 0 1 6 7 3 3 6 4 0 8 7 3 4 8 6 0 5 3 0 3 4 8 5 8 7 6 1 6 4 8 5 7 7 4 1 7 4 8 4 2 9 9 3 6 4 8 3 5 1 1 4 4 4 8 1 9 3 6 5 6 4 8 0 4 8 3 4 3 4 7 9 3 7 1 4 3 4 7 8 2 6 0 0 7 4 7 4 8 6 5 4 4 4 7 0 7 7 5 1 3 4 6 5 8 0 1 3 7 4 6 4 3 0 7 3 6 4 6 1 1 9 0 2 4 4 5 8 4 6 6 9 6 4 5 3 1 4 9 5 3 4 4 5 6 8 1 4 4 4 3 7 5 9 0 5 6 4 3 5 6 8 7 7 7 4 3 1 0 7 7 0 3 4 2 6 7 4 8 0 7 4 1 9 6 1 0 2 4 4 0 8 2 2 5 8 4 3 9 8 5 9 3 3 7 3 9 4 8 7 2 7 3 3 9 3 1 5 8 6 4 3 8 4 5 5 2 9 6 3 7 8 7 5 2 8 7 3 7 3 5 0 0 0 7 3 5 7 8 8 7 0 4 3 5 3 1 1 6 5 6 3 5 0 9 1 9 3 6 4 8 6 1 2 2 6 5 4 8 6 1 2 2 6 5 4 8 6 1 2 2 6 5 4 8 6 1 2 2 6 5 4 8 6 1 2 2 6 5 4 8 6 1 2 2 6 5 4 8 6 1 2 2 6 5 4 8 6 1 2 2 6 5 4 8 6 1 2 2 6 5 4 8 6 1 2 2 6 5 4 8 6 1 2 2 6 5 4 8 6 1 2 2 6 5 4 8 6 1 2 2 6 5 4 8 6 1 2 2 6 5 4 8 6 1 2 2 6 5 4 8 6 1 2 2 6 5 4 8 6 1 2 2 6 5 4 8 6 1 2 2 6 5 4 8 6 1 2 2 6 5 4 8 6 1 2 2 6 5 4 8 6 1 2 2 6 5 4 8 6 1 2 2 6 5 4 8 6 1 2 2 6 5 4 8 6 1 2 2 6 5 4 8 6 1 2 2 6 5 4 8 6 1 2 2 6 5 4 8 6 1 2 2 6 5 4 8 6 1 2 2 6 5 4 8 6 1 2 2 6 5 4 8 6 1 2 2 6 5 4 8 6 1 2 2 6 5 4 8 6 1 2 2 6 5