Shortest primitive Pythagorean triangle hypotenuse with 32 distinct such triangles sharing it?

Let a < b < c a<b<c be a primitive Pythagoras triplet.

Find the smallest possible value of c c such that there are exactly 32 solutions of ( a , b , c ) (a,b,c) .


The answer is 48612265.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

N.B., the list of such triangles was not requested as part of the solution.

The answer is the product of the first 6 4 n + 1 4n+1 primes: 5 , 13 , 17 , 29 , 37 , 41 5, 13, 17, 29, 37, 41 . The primitive Pythagorean triangle hypotenuse always is a product of such primes and the multiplicity of a given hypotenuse is 2 n 1 2^{n-1} where is the number of distinct factors in the factorization in the hypotenuse's length.

This integer sequence supplies the answer and states the size of the solution set of a primitive Pythagorean triangle hypotenuse value.

Here is the list of such triangles, even though that list was not required for the problem's solution: 822696 48605303 48612265 1547863 48587616 48612265 1840344 48577417 48612265 4206377 48429936 48612265 5031817 48351144 48612265 6365833 48193656 48612265 7383024 48048343 48612265 8073576 47937143 48612265 8707776 47826007 48612265 10400983 47486544 48612265 12118584 47077513 48612265 13908384 46580137 48612265 14399273 46430736 48612265 15368407 46119024 48612265 16162697 45846696 48612265 17598504 45314953 48612265 19412183 44568144 48612265 21173033 43759056 48612265 21561864 43568777 48612265 22469496 43107703 48612265 23281176 42674807 48612265 24544343 41961024 48612265 26394487 40822584 48612265 27827784 39859337 48612265 28353264 39487273 48612265 28590473 39315864 48612265 29737897 38455296 48612265 30473184 37875287 48612265 31114776 37350007 48612265 32898647 35788704 48612265 33410167 35311656 48612265 33640873 35091936 48612265 \begin{array}{rrr} 822696 & 48605303 & 48612265 \\ 1547863 & 48587616 & 48612265 \\ 1840344 & 48577417 & 48612265 \\ 4206377 & 48429936 & 48612265 \\ 5031817 & 48351144 & 48612265 \\ 6365833 & 48193656 & 48612265 \\ 7383024 & 48048343 & 48612265 \\ 8073576 & 47937143 & 48612265 \\ 8707776 & 47826007 & 48612265 \\ 10400983 & 47486544 & 48612265 \\ 12118584 & 47077513 & 48612265 \\ 13908384 & 46580137 & 48612265 \\ 14399273 & 46430736 & 48612265 \\ 15368407 & 46119024 & 48612265 \\ 16162697 & 45846696 & 48612265 \\ 17598504 & 45314953 & 48612265 \\ 19412183 & 44568144 & 48612265 \\ 21173033 & 43759056 & 48612265 \\ 21561864 & 43568777 & 48612265 \\ 22469496 & 43107703 & 48612265 \\ 23281176 & 42674807 & 48612265 \\ 24544343 & 41961024 & 48612265 \\ 26394487 & 40822584 & 48612265 \\ 27827784 & 39859337 & 48612265 \\ 28353264 & 39487273 & 48612265 \\ 28590473 & 39315864 & 48612265 \\ 29737897 & 38455296 & 48612265 \\ 30473184 & 37875287 & 48612265 \\ 31114776 & 37350007 & 48612265 \\ 32898647 & 35788704 & 48612265 \\ 33410167 & 35311656 & 48612265 \\ 33640873 & 35091936 & 48612265 \\ \end{array}

There is actually a smaller solution: 29641625. See my solution for a full explanation, but the short version is that the smallest integer satisfying this condition is c = p 1 b 1 p 2 b 2 p r b r c=p_1^{b_1}p_2^{b_2}\cdots p_r^{b_r} where all p k p_k are primes of the form 4 n + 1 4n+1 and ( b 1 + 1 ) ( b 2 + 1 ) ( b r + 1 ) = 64 (b_1+1)(b_2+1)\cdots(b_r+1) = 64 . Your solution satisfies this condition, but 5 3 13 17 29 37 5^3\cdot 13\cdot 17\cdot 29 \cdot 37 is smaller.

Jordan Cahn - 2 years, 5 months ago

Log in to reply

No. Not all the resultant triangles are primitive which is a requirement of the problem.

716007 29632976 29641625 1 729496 29632647 29641625 1 1349864 29610873 29641625 1 2039175 29571400 29641625 25 2791833 29509856 29641625 1 3088216 29480313 29641625 1 3478400 29436825 29641625 25 4521753 29294704 29641625 1 4903047 29233304 29641625 1 5582600 29111175 29641625 25 6322384 28959513 29641625 1 6995175 28804400 29641625 25 7596825 28651600 29641625 25 8984600 28247175 29641625 25 10237600 27817575 29641625 25 11219175 27436400 29641625 25 11581575 27285400 29641625 25 12543400 26856825 29641625 25 13510425 26383600 29641625 25 14780600 25693575 29641625 25 15315400 25378425 29641625 25 15902343 25014824 29641625 1 16534425 24601600 29641625 25 17102944 24209817 29641625 1 17617017 23838344 29641625 1 18452600 23197575 29641625 25 18758224 22951143 29641625 1 18987897 22761496 29641625 1 19561575 22270400 29641625 25 20074976 21808743 29641625 1 20357416 21545337 29641625 1 20527264 21383577 29641625 1 \begin{array}{rrrr} 716007 & 29632976 & 29641625 & 1 \\ 729496 & 29632647 & 29641625 & 1 \\ 1349864 & 29610873 & 29641625 & 1 \\ 2039175 & 29571400 & 29641625 & 25 \\ 2791833 & 29509856 & 29641625 & 1 \\ 3088216 & 29480313 & 29641625 & 1 \\ 3478400 & 29436825 & 29641625 & 25 \\ 4521753 & 29294704 & 29641625 & 1 \\ 4903047 & 29233304 & 29641625 & 1 \\ 5582600 & 29111175 & 29641625 & 25 \\ 6322384 & 28959513 & 29641625 & 1 \\ 6995175 & 28804400 & 29641625 & 25 \\ 7596825 & 28651600 & 29641625 & 25 \\ 8984600 & 28247175 & 29641625 & 25 \\ 10237600 & 27817575 & 29641625 & 25 \\ 11219175 & 27436400 & 29641625 & 25 \\ 11581575 & 27285400 & 29641625 & 25 \\ 12543400 & 26856825 & 29641625 & 25 \\ 13510425 & 26383600 & 29641625 & 25 \\ 14780600 & 25693575 & 29641625 & 25 \\ 15315400 & 25378425 & 29641625 & 25 \\ 15902343 & 25014824 & 29641625 & 1 \\ 16534425 & 24601600 & 29641625 & 25 \\ 17102944 & 24209817 & 29641625 & 1 \\ 17617017 & 23838344 & 29641625 & 1 \\ 18452600 & 23197575 & 29641625 & 25 \\ 18758224 & 22951143 & 29641625 & 1 \\ 18987897 & 22761496 & 29641625 & 1 \\ 19561575 & 22270400 & 29641625 & 25 \\ 20074976 & 21808743 & 29641625 & 1 \\ 20357416 & 21545337 & 29641625 & 1 \\ 20527264 & 21383577 & 29641625 & 1 \\ \end{array}

A Former Brilliant Member - 2 years, 5 months ago

Log in to reply

Ah, I totally missed the primitive condition! My mistake.

Jordan Cahn - 2 years, 5 months ago
Jordan Cahn
Dec 17, 2018

I missed the condition that the Pythagorean triple be primitive. I'll leave my solution below, anyway -- there are two shorter hypotenuses if you remove the primitive condition: 29,641,625 and 32,846,125.


There is a known method to compute the number of ways a number can be expressed as the sum of two squares.

Let n n be the number of ways to write our number c c as the sum of two squares of positive integers (ignoring order ). Then we compute n n using the following steps:

  • Consider the prime factorization of c c . Split up your prime factors into 2 2 , primes of the form 4 k + 1 4k+1 , and primes of the form 4 k + 3 4k+3 .
  • If any of the primes of the form 4 k + 3 4k+3 is raised to an odd power, then your number cannot be written as the sum of two squares.
  • Say there are r r prime factors of the form 4 k + 1 4k+1 . Set B = k = 1 r ( b k + 1 ) B=\prod_{k=1}^r (b_k+1) , where the b k b_k s are the exponents on the primes of these factors.
  • The number of ways to write c c as the sum of two squares is n = 1 2 B n=\frac{1}{2}B if B B is even and n = 1 2 ( B ( 1 ) a ) n=\frac{1}{2}(B-(-1)^a) if B B is odd, where a a is the exponent of 2 2 in the prime factorization.

Since we want n = 32 n=32 , either B = 63 , 64 , 65 B=63,64,65 , depending on a a . Since we wish to minimize c c , assume that there are no prime factors of the form 4 k + 3 4k+3 .

  • If B = 63 = 7 3 3 B=63=7\cdot 3\cdot 3 then a a (the exponent of 2 2 in the prime factorization) must be odd. Thus c c is minimized when a = 1 a=1 . We have the following possibilities for c c : c = 2 5 6 1 3 2 1 7 2 c = 2 5 8 1 3 6 c = 2 5 20 1 3 2 c = 2 5 62 \begin{aligned} c &= 2\cdot 5^6\cdot 13^2\cdot 17^2 \\ c &= 2\cdot 5^8\cdot 13^6 \\ c &= 2\cdot 5^{20}\cdot 13^2 \\ c &= 2\cdot 5^{62} \\ \end{aligned} The smallest of these is the first, which is on the order of 1 0 8 10^8 .
  • If B = 65 = 13 5 B=65 = 13\cdot 5 then a a must be even. Thus c c is minimized when a = 0 a=0 . We have the following possibilities for c c : c = 5 1 2 1 3 4 c = 5 6 4 \begin{aligned} c &= 5^12 \cdot 13^4 \\ c &= 5^64 \end{aligned} The smallest of these is the first, which is on the order of 1 0 12 10^{12} .
  • If B = 64 = 2 6 B=64 = 2^6 then a a can be either even or odd. Thus c c is minimized when a = 0 a=0 . Consider c = 5 1 1 3 1 1 7 1 2 9 1 3 7 1 4 1 1 c = 5^1\cdot 13^1\cdot 17^1\cdot 29^1\cdot 37^1\cdot 41^1 any other possibility for c c will involve raising one of those factors to an exponent of at least 3 3 . For any factor other than 5, this would mean multiplying by a factor greater than 41 41 , thus increasing c c . However, c = 5 3 1 3 1 1 7 1 2 9 1 3 7 1 c=5^3\cdot 13^1\cdot 17^1\cdot 29^1\cdot 37^1 is indeed smaller. This is on the order of 1 0 7 10^7 and thus smaller than either of our previous two cases as well. Thus the correct answer is c = 5 3 1 3 1 1 7 1 2 9 1 3 7 1 = 29641625 c=5^3\cdot 13^1\cdot 17^1\cdot 29^1\cdot 37^1=\boxed{29641625}

You missed the requirement of primitive right triangles.

A Former Brilliant Member - 2 years, 3 months ago

Log in to reply

Yeah, read the first sentence of my solution.

Jordan Cahn - 2 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...