Let x and y be reals such that x 2 − x y + y 2 = 3 . Find the sum of the minimum and maximum values of x 2 + y 2 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Is this Cauchy?
Transform the problem into polar coordinates: x = r cos θ y = r sin θ
Then the condition becomes r 2 ( 1 − cos θ sin θ ) = 3 and we have to find the extreme values of r 2 . From the condition we know that r 2 = 1 − cos θ sin θ 3 = 1 − 2 sin 2 θ 3 = 2 − sin 2 θ 6 . Now let's just do the substitution ϕ = 2 θ to get r 2 = 2 − sin ϕ 6 .
We know that the sine function oscillates between 1 and -1. When sin ϕ = 1 we get the maximum r 2 = 2 − 1 6 = 6 . When sin ϕ = − 1 we get the minimum r 2 = 2 + 1 6 = 2 .
The solution is 2 + 6 = 8 .
As we can see, 2 x 2 − 2 x y + 2 y 2 = 6 ⇒ ( x − y ) 2 + x 2 + y 2 = 6
Let t = x − y
Then x 2 + y 2 = 6 − t 2
So we need to find the range of t
Obviously x = t + y
So ( t + y ) 2 − ( t + y ) y + y 2 = 3 ⇒ y 2 + t y + t 2 − 3 = 0 Regard y as the pivot element.
the discriminant Δ = t 2 − 4 ( t 2 − 3 ) ⩾ 0 ⇒ − 2 ⩽ t ⩽ 2
Therefore,
when t = 2 o r t = − 2 ( x 2 + y 2 ) m i n = 2
when t = 0 ( x 2 + y 2 ) m a x = 6
So we can draw the conclusion that ( x 2 + y 2 ) m i n + ( x 2 + y 2 ) m a x = 8
Problem Loading...
Note Loading...
Set Loading...
( x + y ) 2 ≥ 0 = > x 2 + y 2 ≥ − 2 x y = > 3 ( x 2 + y 2 ) ≥ 2 ( x 2 + y 2 − x y ) = > x 2 + y 2 ≥ 2
Equality holds when x = 1 , y = − 1 or x = − 1 , y = 1 .
( x − y ) 2 ≥ 0 = > x 2 + y 2 − 2 x y ≥ 0 = > 2 ( x 2 + y 2 − x y ) ≥ x 2 + y 2 = > x 2 + y 2 ≤ 6
Equality holds when x = y = 3 .