Just Cauchy it

Algebra Level 4

Let x x and y y be reals such that x 2 x y + y 2 = 3 x^2-xy+y^2=3 . Find the sum of the minimum and maximum values of x 2 + y 2 x^2+y^2 .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Steven Jim
Jun 5, 2018

( x + y ) 2 0 = > x 2 + y 2 2 x y = > 3 ( x 2 + y 2 ) 2 ( x 2 + y 2 x y ) = > x 2 + y 2 2 (x+y)^2 \ge 0 => x^2+y^2 \ge -2xy => 3(x^2+y^2) \ge 2(x^2+y^2-xy) => x^2+y^2 \ge 2

Equality holds when x = 1 , y = 1 x=1,y=-1 or x = 1 , y = 1 x=-1,y=1 .

( x y ) 2 0 = > x 2 + y 2 2 x y 0 = > 2 ( x 2 + y 2 x y ) x 2 + y 2 = > x 2 + y 2 6 (x-y)^2 \ge 0 => x^2+y^2-2xy \ge 0 => 2(x^2+y^2-xy) \ge x^2+y^2 => x^2+y^2 \le 6

Equality holds when x = y = 3 x=y=\sqrt{3} .

Is this Cauchy?

e r - 2 years, 12 months ago

Log in to reply

Technically, yes.

Steven Jim - 2 years, 12 months ago
Leonel Castillo
Jun 8, 2018

Transform the problem into polar coordinates: x = r cos θ y = r sin θ x = r \cos \theta \\ y = r \sin \theta

Then the condition becomes r 2 ( 1 cos θ sin θ ) = 3 r^2(1 - \cos \theta \sin \theta) = 3 and we have to find the extreme values of r 2 r^2 . From the condition we know that r 2 = 3 1 cos θ sin θ = 3 1 sin 2 θ 2 = 6 2 sin 2 θ r^2 = \frac{3}{1 - \cos \theta \sin \theta} = \frac{3}{1 - \frac{\sin 2 \theta}{2} } = \frac{6}{2 - \sin 2 \theta} . Now let's just do the substitution ϕ = 2 θ \phi = 2 \theta to get r 2 = 6 2 sin ϕ r^2 = \frac{6}{2 - \sin \phi} .

We know that the sine function oscillates between 1 and -1. When sin ϕ = 1 \sin \phi = 1 we get the maximum r 2 = 6 2 1 = 6 r^2 = \frac{6}{2 - 1} = 6 . When sin ϕ = 1 \sin \phi = -1 we get the minimum r 2 = 6 2 + 1 = 2 r^2 = \frac{6}{2 + 1} = 2 .

The solution is 2 + 6 = 8 2 + 6 = 8 .

Larry Johnson
Sep 21, 2019

As we can see, 2 x 2 2 x y + 2 y 2 = 6 ( x y ) 2 + x 2 + y 2 = 6 2x^2-2xy+2y^2=6 \Rightarrow (x-y)^2+x^2+y^2=6\\

Let t = x y \ t=x-y

Then \quad x 2 + y 2 = 6 t 2 \ x^2+y^2=6-t^2

So we need to find the range of t \mathit{t}\

Obviously x = t + y \ x=t+y

So ( t + y ) 2 ( t + y ) y + y 2 = 3 y 2 + t y + t 2 3 = 0 \ (t+y)^2-(t+y)y+y^2=3 \Rightarrow y^2+ty+t^2-3=0\ Regard y \ \mathit{y}\ as the pivot element.

the discriminant Δ = t 2 4 ( t 2 3 ) 0 2 t 2 \Delta = t^2-4(t^2-3) \geqslant 0 \Rightarrow -2\leqslant t \leqslant 2

Therefore,

when t = 2 o r t = 2 ( x 2 + y 2 ) m i n = 2 \ t=2\ or\ t=-2\ \ \ (x^2+y^2)_{min}=2

when t = 0 ( x 2 + y 2 ) m a x = 6 \ t=0\ \ \ \ (x^2+y^2)_{max}=6

So we can draw the conclusion that ( x 2 + y 2 ) m i n + ( x 2 + y 2 ) m a x = 8 (x^2+y^2)_{min}+(x^2+y^2)_{max}=8

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...