∫ 0 2 1 ( 1 − x ) 2 1 − x 2 d x = A B − D C
The equation above is true for positive integers A , B , C , D . Find min ( A + B + C + D )
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Consider:
I = ∫ 0 1 / 2 ( 1 − x ) 2 1 − x 2 d x
Taking x = sin ( t ) transforms the integral to:
I = ∫ 0 π / 6 ( 1 − sin t ) 2 d t
Multiplying the numerator and denominator by ( 1 + sin t ) 2 gives:
I = ∫ 0 π / 6 ( 1 + sin t ) 2 ( 1 − sin t ) 2 ( 1 + sin t ) 2 d t
I = ∫ 0 π / 6 cos 4 t 1 + 2 sin t + sin 2 t d t
I = ∫ 0 π / 6 ( sec 4 t + 2 tan t sec 3 t + tan 2 t sec 2 t ) d t
I = ∫ 0 π / 6 sec 4 t d t + ∫ 0 π / 6 2 tan t sec 3 t d t + ∫ 0 π / 6 tan 2 t sec 2 t d t
I = ∫ 0 π / 6 ( ( 1 + tan 2 t ) sec 2 t ) d t + ∫ 0 π / 6 ( 2 ( tan t sec t ) sec 2 t ) d t + ∫ 0 π / 6 ( tan 2 t sec 2 t ) d t = I 1 + I 2 + I 3
I 1 and I 3 can be evaluated by taking tan t = z while I 2 can be evaluated by taking sec t = z . All the integrals transform to:
I = ∫ 0 1 / 3 ( 1 + z 2 ) d z + 2 ∫ 1 2 / 3 z 2 d z + + ∫ 0 1 / 3 z 2 d z
Evaluating the above and simplifying gives:
I = 1 3 − 3 2
Trivial steps involving working out the change of the variables of integration and evaluation of simple definite integrals have been skipped throughout this solution.
Problem Loading...
Note Loading...
Set Loading...
I = ∫ 0 2 1 ( 1 − x ) 2 1 − x 2 d x = ∫ 0 6 π ( 1 − sin θ ) 2 d θ = ∫ 0 2 − 3 ( 1 − 1 + t 2 2 t ) 2 ( 1 + t 2 ) 2 d t = 2 ∫ 0 2 − 3 ( t − 1 ) 4 t 2 + 1 d t = 2 ∫ 0 2 − 3 ( t − 1 ) 2 1 + ( t − 1 ) 3 2 + ( t − 1 ) 4 2 d t = 2 ∫ − 1 1 − 3 u 2 1 + u 3 2 + u 4 2 d u = 2 [ u 1 + u 2 1 + 3 u 3 2 ] 1 − 3 − 1 = 2 [ − 1 + 1 − 3 2 + 2 3 + 1 − 2 3 + 2 + 6 3 3 + 5 ] = 3 − 3 2 Let x = sin θ ⟹ d x = cos θ Let t = tan 2 θ ⟹ d t = 2 sec 2 θ d θ By partial fraction decomposition Let u = t − 1 ⟹ d u = d t
Then min ( A + B + C + D ) = 1 + 3 + 2 + 3 = 9 .