Should I Hunt for the Antiderivative?

Calculus Level 4

0 1 2 d x ( 1 x ) 2 1 x 2 = A B C D \int_0^{\frac{1}{2}} \frac{\text{d}x}{(1-x)^2\sqrt{1-x^2}}=A\sqrt{B}-\frac{C}{D}

The equation above is true for positive integers A , B , C , D A,B,C,D . Find min ( A + B + C + D ) \text{min}\left(A+B+C+D\right)


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Aug 26, 2019

I = 0 1 2 d x ( 1 x ) 2 1 x 2 Let x = sin θ d x = cos θ = 0 π 6 d θ ( 1 sin θ ) 2 Let t = tan θ 2 d t = sec 2 θ 2 d θ = 0 2 3 2 d t ( 1 2 t 1 + t 2 ) 2 ( 1 + t 2 ) = 2 0 2 3 t 2 + 1 ( t 1 ) 4 d t By partial fraction decomposition = 2 0 2 3 1 ( t 1 ) 2 + 2 ( t 1 ) 3 + 2 ( t 1 ) 4 d t Let u = t 1 d u = d t = 2 1 1 3 1 u 2 + 2 u 3 + 2 u 4 d u = 2 [ 1 u + 1 u 2 + 2 3 u 3 ] 1 3 1 = 2 [ 1 + 1 2 3 + 3 + 1 2 3 + 2 2 + 3 3 + 5 6 ] = 3 2 3 \begin{aligned} I & = \int_0^\frac 12 \frac {dx}{(1-x)^2\sqrt{1-x^2}} & \small \color{#3D99F6} \text{Let }x = \sin \theta \implies dx = \cos \theta \\ & = \int_0^\frac \pi 6 \frac {d\theta}{(1-\sin \theta)^2} & \small \color{#3D99F6} \text{Let } t = \tan \frac \theta 2 \implies dt = \frac {\sec^2 \theta}2 d\theta \\ & = \int_0^{2-\sqrt 3} \frac {2\ dt}{\left(1-\frac {2t}{1+t^2}\right)^2 (1+t^2)} \\ & = 2 \int_0^{2-\sqrt 3} \frac {t^2 + 1}{(t-1)^4} dt & \small \color{#3D99F6} \text{By partial fraction decomposition} \\ & = 2 \int_0^{2-\sqrt 3} \frac 1{(t-1)^2} + \frac 2{(t-1)^3} + \frac 2{(t-1)^4} \ dt & \small \color{#3D99F6} \text{Let } u = t - 1 \implies du = dt \\ & = 2 \int_{-1}^{1-\sqrt 3} \frac 1{u^2} + \frac 2{u^3} + \frac 2{u^4} \ du \\ & = 2 \left[\frac 1u + \frac 1{u^2} + \frac 2{3u^3} \right]^{-1}_{1-\sqrt 3} \\ & = 2 \left[-1 + 1 - \frac 23 + \frac {\sqrt 3+1}2 - \frac {\sqrt 3+2}2 + \frac {3\sqrt 3+5}6 \right] \\ & = \sqrt 3 - \frac 23 \end{aligned}

Then min ( A + B + C + D ) = 1 + 3 + 2 + 3 = 9 \min (A+B+C+D) = 1+3+2+3 = \boxed 9 .

Karan Chatrath
Aug 25, 2019

Consider:

I = 0 1 / 2 d x ( 1 x ) 2 1 x 2 I = \int_{0}^{1/2} \frac{dx}{(1-x)^2\sqrt{1-x^2}}

Taking x = sin ( t ) x = \sin(t) transforms the integral to:

I = 0 π / 6 d t ( 1 sin t ) 2 I = \int_{0}^{\pi/6}\frac{dt}{(1-\sin{t})^2}

Multiplying the numerator and denominator by ( 1 + sin t ) 2 (1+\sin{t})^2 gives:

I = 0 π / 6 ( 1 + sin t ) 2 ( 1 + sin t ) 2 ( 1 sin t ) 2 d t I = \int_{0}^{\pi/6} \frac{(1+\sin{t})^2}{(1+\sin{t})^2(1-\sin{t})^2}dt

I = 0 π / 6 1 + 2 sin t + sin 2 t cos 4 t d t I = \int_{0}^{\pi/6} \frac{1+2\sin{t}+\sin^2{t}}{\cos^4{t}}dt

I = 0 π / 6 ( sec 4 t + 2 tan t sec 3 t + tan 2 t sec 2 t ) d t I = \int_{0}^{\pi/6} \left(\sec^4{t}+2\tan{t}\sec^3{t}+\tan^2{t}\sec^2{t}\right)dt

I = 0 π / 6 sec 4 t d t + 0 π / 6 2 tan t sec 3 t d t + 0 π / 6 tan 2 t sec 2 t d t I = \int_{0}^{\pi/6}\sec^4{t}dt + \int_{0}^{\pi/6}2\tan{t}\sec^3{t}dt + \int_{0}^{\pi/6}\tan^2{t}\sec^2{t}dt

I = 0 π / 6 ( ( 1 + tan 2 t ) sec 2 t ) d t + 0 π / 6 ( 2 ( tan t sec t ) sec 2 t ) d t + 0 π / 6 ( tan 2 t sec 2 t ) d t = I 1 + I 2 + I 3 I = \int_{0}^{\pi/6}(\left(1+\tan^2{t}\right)\sec^2{t})dt + \int_{0}^{\pi/6}(2\left(\tan{t}\sec{t}\right)\sec^2{t})dt + \int_{0}^{\pi/6}(\tan^2{t}\sec^2{t})dt = I_1 + I_2 + I_3

I 1 I_1 and I 3 I_3 can be evaluated by taking tan t = z \tan{t} = z while I 2 I_2 can be evaluated by taking sec t = z \sec{t} = z . All the integrals transform to:

I = 0 1 / 3 ( 1 + z 2 ) d z + 2 1 2 / 3 z 2 d z + + 0 1 / 3 z 2 d z I = \int_{0}^{1/\sqrt{3}}\left(1+z^2\right)dz + 2\int_{1}^{2/\sqrt{3}}z^2dz + + \int_{0}^{1/\sqrt{3}}z^2dz

Evaluating the above and simplifying gives:

I = 1 3 2 3 \boxed{I = 1\sqrt{3} - \frac{2}{3}}

Trivial steps involving working out the change of the variables of integration and evaluation of simple definite integrals have been skipped throughout this solution.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...