Should I Raise It To The Fifth Power?

Algebra Level 4

Given that x + 1 x = 2 cos ( 4 2 ) x + \dfrac1x = 2\cos(42^\circ) .

Without using a calculator, show that A = x 5 + 1 x 5 -\sqrt A = x^5 + \dfrac1{x^5} for some integer A A .

Submit your answer as A A .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Loo Soo Yong
Aug 26, 2016

Relevant wiki: De Moivre's Theorem - Raising to a Power - Intermediate

Raising both sides to the power of 5 can be extremely tedious and requires extensive work, however we can use de Moivre's theorem to greatly simplify the working:

Chew-Seong Cheong
Aug 26, 2016

I am using Newton's sums or identities to solve the problem.

Let P n = x n + 1 x n P_n = x^n + \dfrac 1{x^n} , where n n is a positive integer, S 1 = x + 1 x = 2 cos 4 2 S_1 = x + \dfrac 1x = 2\cos 42^\circ and S 2 = x × 1 x = 1 S_2 = x \times \dfrac 1x = 1 . Then we have:

P 1 = S 1 = 2 cos 4 2 x + 1 x = 2 cos 4 2 \begin{aligned} P_1 & = S_1 = 2\cos 42^\circ & \implies x + \dfrac 1x = 2\cos 42^\circ \end{aligned}

P 2 = S 1 P 1 2 S 2 = 4 cos 2 4 2 2 = 2 cos 8 4 x 2 + 1 x 2 = 2 cos 8 4 \begin{aligned} P_2 & = S_1P_1 - 2S_2 \\ & = 4\cos^2 42^\circ - 2 \\ & = 2\cos 84^\circ & \implies x^2 + \dfrac 1{x^2} = 2\cos 84^\circ \end{aligned}

P 3 = S 1 P 2 S 2 P 1 = ( 2 cos 4 2 ) ( 4 cos 2 4 2 2 ) 2 cos 4 2 = 2 ( 4 cos 3 4 2 3 cos 4 2 ) = 2 cos 12 6 \begin{aligned} P_3 & = S_1P_2 - S_2P_1 \\ & = (2\cos 42^\circ)(4\cos^2 42^\circ - 2) - 2\cos 42^\circ \\ & = 2(4\cos^3 42^\circ - 3 \cos 42^\circ) \\ & = 2\cos 126^\circ \end{aligned}

x 3 + 1 x 3 = 2 cos 12 6 \begin{aligned} \implies x^3 + \dfrac 1{x^3} & = 2\cos 126^\circ \end{aligned}

P 4 = S 1 P 3 S 2 P 2 = 16 cos 4 4 2 12 cos 2 4 2 4 cos 2 4 2 + 2 = 2 ( 8 cos 4 4 2 8 cos 2 4 2 + 1 ) = 2 cos 16 8 \begin{aligned} P_4 & = S_1P_3 - S_2P_2 \\ & = 16\cos^4 42^\circ - 12\cos^2 42^\circ - 4\cos^2 42^\circ + 2 \\ & = 2(8\cos^4 42^\circ - 8\cos^2 42^\circ + 1) \\ & = 2\cos 168^\circ \end{aligned}

x 4 + 1 x 4 = 2 cos 16 8 \begin{aligned} \implies x^4 + \dfrac 1{x^4} & = 2\cos 168^\circ \end{aligned}

P 5 = S 1 P 4 S 2 P 3 = 32 cos 5 4 2 32 cos 3 4 2 + 4 cos 4 2 8 cos 3 4 2 + 6 cos 4 2 = 2 ( 16 cos 5 4 2 20 cos 3 4 2 + 5 cos 4 2 ) = 2 cos 21 0 \begin{aligned} P_5 & = S_1P_4 - S_2P_3 \\ & = 32\cos^5 42^\circ - 32\cos^3 42^\circ + 4\cos 42^\circ - 8\cos^3 42^\circ + 6 \cos 42^\circ \\ & = 2(16\cos^5 42^\circ - 20\cos^3 42^\circ + 5\cos 42^\circ) \\ & = 2\cos 210^\circ \end{aligned}

x 5 + 1 x 5 = 2 cos 21 0 = 2 ( 3 2 ) = 3 \begin{aligned} \implies x^5 + \dfrac 1{x^5} & = 2\cos 210^\circ = 2 \left(-\frac {\sqrt 3}2 \right) = -\sqrt 3 \end{aligned}

A = 3 \implies A = \boxed{3} .

Exactly same method. Wondering why this simple question is level 4?

Prince Loomba - 4 years, 9 months ago
Utkarsh Dwivedi
Sep 1, 2016

Here is what I did : x + 1 x = 2 cos 4 2 x + \frac{1}{x} = 2\cos42^\circ Squaring both sides, we have, x 2 + 1 x 2 = 4 cos 2 4 2 2 = 2 cos 8 2 1 x^{2}+\frac{1}{x^{2}} = 4\cos^{2}42^\circ - 2= 2\cos82^\circ \ldots 1 Now cube the first equation to give, x 3 + 1 x 3 + 3 ( x + 1 x ) = 8 cos 3 4 2 x^{3} + \frac{1}{x^{3}} + 3(x+ \frac{1}{x}) = 8 \cos^{3}42^\circ Using the value of first or initial equation and identity, 4 cos 3 θ = cos 3 θ + 3 cos θ 4\cos^{3}\theta = \cos3\theta + 3\cos\theta x 3 + 1 x 3 = 2 cos 12 6 2 \Rightarrow x^{3} + \frac{1}{x^{3}} = 2\cos126^\circ \ldots 2 Now multiply 1 and 2 , To get, x 5 + 1 x 5 + x + 1 x = 2 ( cos 21 0 + cos 4 2 ) x^{5} + \frac{1}{x^{5}} + x + \frac{1}{x} = 2 (\cos210^\circ + \cos42^\circ) x 5 + 1 x 5 = 3 x^{5} + \frac{1}{x^{5}} = -\sqrt {3} So, A = 3 A = \boxed {3}

Exactly same method!

Prince Loomba - 4 years, 9 months ago
Kishore S. Shenoy
Oct 11, 2016

Given x + 1 x = 2 cos 4 2 x+\dfrac 1x = 2\cos 42^\circ

Let θ = 4 2 \theta = 42^\circ . Cross - Multiplying and Rearranging, x 2 2 cos θ x + 1 = 0 x = cos θ ± cos 2 θ 1 = c o s θ ± i sin θ = e ± i θ x^2-2\cos \theta \cdot x+ 1=0\\x = \cos\theta \pm \sqrt{\cos^2\theta -1}=cos\theta \pm i\sin\theta=e^{\pm i\theta}

So, x 5 = e ± 5 i θ x 5 + 1 x 5 = 2 { x 5 } = 2 cos ( ± 5 θ ) = 2 cos ( 18 0 + 3 0 ) = 3 x^5 = e^{\pm 5i\theta}\\x^5+\dfrac 1{x^5} = 2~\Re\{ x^5\} = 2\cos \left(\pm 5\theta\right) = 2\cos (180^\circ + 30^\circ) = -\sqrt3

Therefore, A = 3 \color{#3D99F6}{A=\boxed{ 3}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...