Should I use Triple Angle...

Geometry Level pending

The sum of all solutions to the equation

cos 3 x + cos 7 x + cos 11 x = 0 \cos 3x+\cos 7x+\cos 11x=0

over the interval [ 0 , π ] [0, \pi] can be expressed in the form a π b \frac{a\pi}{b} , where a a and b b are positive coprime integers. What is the value of a b ab ?


The answer is 22.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Dec 20, 2014

cos 3 x + cos 7 x + cos 11 x = 0 cos 7 x 4 x + cos 7 x + cos 7 x + 4 x = 0 cos 7 x cos 4 x sin 7 x sin 4 x + cos 7 x + cos 7 x cos 4 x + sin 7 x sin 4 x = 0 cos 7 x ( 2 cos 4 x 1 ) = 0 \begin{aligned} \cos {3x} + \cos {7x} + \cos {11x} & = 0 \\ \cos {7x-4x} + \cos {7x} + \cos {7x+4x} & = 0 \\ \cos {7x}\cos{4x} - \sin{7x}\sin{4x} + \cos {7x} + \cos {7x}\cos{4x} + \sin{7x}\sin{4x} & = 0\\ \cos{7x}(2\cos{4x}-1) & =0 \end{aligned}

{ cos 7 x = 0 x = π 14 , 3 π 14 , 5 π 14 , π 2 , 9 π 14 , 11 π 14 , 13 π 14 2 cos 4 x 1 = 0 x = π 12 , 5 π 12 , 7 π 12 , 11 π 12 \Rightarrow \begin {cases} \cos{7x} = 0 & \Rightarrow x = \frac{\pi}{14}, \frac{3\pi}{14},\frac{5\pi}{14}, \frac{\pi}{2}, \frac{9\pi}{14}, \frac{11\pi}{14}, \frac{13\pi}{14} \\ 2\cos{4x}-1=0 & \Rightarrow x = \frac{\pi}{12}, \frac{5\pi}{12}, \frac{7\pi}{12}, \frac{11\pi}{12} \end {cases}

The sum of all solution is 11 π 2 = a π b a b = 22 \dfrac {11\pi}{2} = \dfrac {a\pi}{b} \quad \Rightarrow ab = \boxed {22}

You can just directly use the sum to product formula:

cos ( 11 x ) + cos ( 3 x ) = 2 cos ( 11 x + 3 x 2 ) cos ( 11 x 3 x 2 ) \cos (11x) + \cos (3x) = 2 \cos \left ( \frac {11x + 3x}{2} \right) \cos \left ( \frac {11x - 3x}{2} \right )

Pi Han Goh - 6 years, 2 months ago

I wrote a+b , same

NCERT question

U Z - 6 years, 5 months ago

2cos4x + 1 =0 and not 2cos4x - 1 =0. Also pi/2 is not its solution. Yes pi/2 is a solution of cos7x = 0.

vinod trivedi - 4 years, 10 months ago

Log in to reply

Thanks, the rest of the solutions were wrong too. I have changed the solutions.

Chew-Seong Cheong - 4 years, 10 months ago

I disagree with you.

http://www.wolframalpha.com/input/?i=cos%283x%29%2Bcos%287x%29%2Bcos%2811x%29%3D0%2C+0%3C%3Dx%3C%3Dpi

Finn Hulse - 6 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...