Should we draw a triangle?

True or False?

14 C 4 + 14 C 5 = 14 C 6 \large ^{14} C_4 + ^{14}C_5 = ^{14}C_6

Notation: m C n = m ! n ! ( m n ) ! ^m C_n = \dfrac{m!}{n!(m-n)!} .

False True

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

By Pascal's identity, we have:

n 1 C k 1 + n 1 C k = n C k 14 C 4 + 14 C 5 = 15 C 5 = 15 ! 5 ! 10 ! = 6 15 14 ! 9 10 6 ! 8 ! = 14 ! 6 ! 8 ! = 14 C 6 \begin{aligned} ^{n-1}C_{k-1} + ^{n-1}C_k & = ^{n}C_{k} \\ \implies ^{14}C_{4} + ^{14}C_5 & = ^{15}C_5 \\ & = \frac {15!} {5!10!} \\ & = \frac {6\cdot 15\cdot 14!} {9\cdot 10\cdot 6!8!} \\ & = \frac {14!} {6!8!} \\ & = \boxed {^{14}C_6} \end{aligned}

Michael Huang
Dec 3, 2016

By the given notation 14 C 4 + 14 C 5 = 14 C 6 14 ! 4 ! ( 14 4 ) ! + 14 ! 5 ! ( 14 5 ) ! = 14 ! 6 ! ( 14 6 ) ! 14 ! 4 ! 10 ! + 14 ! 5 ! 9 ! = 14 ! 6 ! 8 ! \begin{array}{rl} ^{14}C_4 + ^{14}C_5 &= ^{14}C_6\\ \dfrac{14!}{4!(14 - 4)!} + \dfrac{14!}{5!(14 - 5)!} &= \dfrac{14!}{6!(14 - 6)!}\\ \dfrac{14!}{4!10!} + \dfrac{14!}{5!9!} &= \dfrac{14!}{6!8!} \end{array} Dividing both sides by 14 ! 14! gives 1 4 ! 10 ! + 1 5 ! 9 ! = 1 6 ! 8 ! \dfrac{1}{4!10!} + \dfrac{1}{5!9!} = \dfrac{1}{6!8!} Thus, by multiplying both sides by 6 ! 10 ! 6!10! , 1 4 ! 10 ! 6 ! 10 ! + 1 5 ! 9 ! 6 ! 10 ! = 1 6 ! 8 ! 6 ! 10 ! 6 ! 4 ! + 6 ! 10 ! 5 ! 9 ! = 10 ! 8 ! 6 5 4 ! 4 ! + ( 6 5 ! ) ( 10 9 ! ) 5 ! 9 ! = 10 9 8 ! 8 ! 30 + 60 = 90 \begin{array}{rl} \dfrac{1}{4!10!} \cdot 6!10! + \dfrac{1}{5!9!} \cdot 6!10! &= \dfrac{1}{6!8!} \cdot 6!10!\\ \dfrac{6!}{4!} + \dfrac{6!10!}{5!9!} &= \dfrac{10!}{8!}\\ \dfrac{6 \cdot 5 \cdot 4!}{4!} + \dfrac{\left(6 \cdot 5!\right)\left(10 \cdot 9!\right)}{5!9!} &= \dfrac{10 \cdot 9 \cdot 8!}{8!}\\ 30 + 60 &= 90 \end{array} which gives True \boxed{\text{True}} .

Nice!

Bonus: 14 C 4 , 14 C 5 , 14 C 6 ^{14}C_4, ^{14}C_5, ^{14}C_6 follows an arithmetic progression. So we know that there exists integers ( p , q ) (p,q) such that p C q , p C q + 1 , p C q + 2 ^p C_q , ^p C_{q+1}, ^p C_{q+2} follows an arithmetic progression.

Show that if p C q , p C q + 1 , , p C q + n ^p C_q , ^p C_{q+1}, \ldots , ^p C_{q+n} follows an arithmetic progression (in that order), where p , q , n p,q,n are all positive integers with q + n p q+n \leq p , then the maximum value of n n is 2,

Pi Han Goh - 4 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...