Show me your Limits

Calculus Level 3

L = lim r r c 0 π 2 x r sin x d x 0 π 2 x r cos x d x \large L = \lim _{ r\rightarrow \infty }{ \frac { { { r }^{c} }\displaystyle \int _{ 0 }^{ \frac { \pi }{ 2 } }{ { x }^{ r }{ \sin { x } }\ dx } }{ \displaystyle \int _{ 0 }^{ \frac { \pi }{ 2 } }{ { x }^{ r }{ \cos { x } }\ dx } } }

For L L as defined above, find π L c \pi L-c , where c R c \in \mathbb R and L > 0 L>0 .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Brian Lie
Mar 30, 2018

Note that

I s ( r ) = 0 π 2 x r sin x d x = 0 π 2 x r d cos x = ( x r cos x 0 π 2 0 π 2 r x r 1 cos x d x ) = r 0 π 2 x r 1 cos x d x = r 0 π 2 x r 1 d sin x = r ( x r 1 sin x 0 π 2 0 π 2 ( r 1 ) x r 2 sin x d x ) = r ( π 2 ) r 1 r ( r 1 ) 0 π 2 x r 2 sin x d x = r ( π 2 ) r 1 r ( r 1 ) I s ( r 2 ) \begin{aligned} I_s(r)&=\int_0^{\frac \pi 2}x^r\sin x\ dx \\&=-\int_0^{\frac \pi 2}x^rd\cos x \\&=-\left(x^r\cos x\bigg|_0^{\frac \pi 2}-\int_0^{\frac \pi 2}rx^{r-1}\cos x\ dx\right) \\&=r\int_0^{\frac \pi 2}x^{r-1}\cos x\ dx \\&=r\int_0^{\frac \pi 2}x^{r-1}d\sin x \\&=r\left(x^{r-1}\sin x\bigg|_0^{\frac \pi 2}-\int_0^{\frac \pi 2}(r-1)x^{r-2}\sin x\ dx\right) \\&=r\left(\frac \pi 2\right)^{r-1}-r(r-1)\int_0^{\frac \pi 2}x^{r-2}\sin x\ dx \\&=r\left(\frac \pi 2\right)^{r-1}-r(r-1)I_s(r-2) \end{aligned}

Similarly,

I c ( r ) = 0 π 2 x r cos x d x = ( π 2 ) r r ( r 1 ) I c ( r 2 ) \displaystyle I_c(r)=\int_0^{\frac \pi 2}x^r\cos x\ dx=\left(\frac \pi 2\right)^r-r(r-1)I_c(r-2)

Therefore,

L = lim r r c 0 π 2 sin x d x 0 π 2 cos x d x = lim r r c I s ( r ) I c ( r ) = lim r ( π 2 ) r 1 ( r 1 ) I s ( r 2 ) ( π 2 ) r r ( r 1 ) I c ( r 2 ) r c + 1 = lim r ( π 2 ) r 1 ( r 1 ) ( ( r 2 ) ( π 2 ) r 3 ( r 2 ) ( r 3 ) I s ( r 4 ) ) ( π 2 ) r r ( r 1 ) ( ( π 2 ) r 2 ( r 2 ) ( r 3 ) I c ( r 4 ) ) r c + 1 = = lim r 2 π r c + 1 \begin{aligned} L&=\lim_{r\to\infty}\frac{r^c\displaystyle\int_0^{\frac\pi 2}\sin x\ dx}{\displaystyle\int_0^{\frac\pi 2}\cos x\ dx} \\&=\lim_{r\to\infty}\frac{r^cI_s(r)}{I_c(r)} \\&=\lim_{r\to\infty}\frac{\left(\frac \pi 2\right)^{r-1}-(r-1)I_s(r-2)}{\left(\frac \pi 2\right)^r-r(r-1)I_c(r-2)}r^{c+1} \\&=\lim_{r\to\infty}\frac{\left(\frac \pi 2\right)^{r-1}-(r-1)\left((r-2)\left(\frac\pi 2\right)^{r-3}-(r-2)(r-3)I_s(r-4)\right)}{\left(\frac \pi 2\right)^r-r(r-1)\left(\left(\frac\pi 2\right)^{r-2}-(r-2)(r-3)I_c(r-4)\right)}r^{c+1} \\&=\cdots \\&=\lim_{r\to\infty}\frac 2\pi r^{c+1} \end{aligned}

Since the limit exists, we have c + 1 = 0 c+1=0 , that is, c = 1 c=-1 . Thus, L = 2 π L=\frac 2\pi , and the answer is π L c = 3 \pi L-c=\boxed 3 .


Remark: Try a similar problem here .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...