Sufficiently Complex

Geometry Level 4

32 sin 4 x cos 2 x = cos 6 x 2 cos 4 x cos 2 x + a 32 \sin^4 x \ \cos^2 x = \cos 6x - 2 \cos 4x - \cos 2x + a

For constant a a , the above trigonometric identity is true for all x x , find the value of a a .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Incredible Mind
Feb 10, 2015

since true for all x..just sub x=0

same solution !!!

Mayank Holmes - 6 years, 4 months ago

I love how this solution has 6 upvotes... Lol.

Trevor Arashiro - 6 years, 4 months ago

Yep easy method!

B.s. Ashwin - 6 years, 3 months ago

The fastest way to get the answer.

Star Chou - 4 years, 5 months ago
Mustafa Embaby
Feb 15, 2015

32 sin 4 x cos 2 x = 32 ( 1 cos 2 x 2 ) 2 ( 1 + cos 2 x 2 ) = 32 ( 1 cos 2 x 2 ) ( 1 cos 2 2 x 4 ) = 4 ( cos 3 2 x cos 2 2 x cos 2 x + 1 ) \begin{aligned} 32 \sin^4 x \cos^2 x & = & 32 (\frac{1 - \cos2x}{2})^2 (\frac{1 + \cos2x}{2}) \\ & = & 32(\frac{1 - \cos2x}{2}) (\frac{1 - \cos^2 2x}{4}) \\ & = & 4(\cos^3 2x - \cos^2 2x - \cos 2x + 1) \\ \end{aligned}


cos 3 x = 4 cos 3 x 3 cos x cos 3 x = 1 4 ( cos 3 x + 3 cos x ) \because \cos 3x = 4 \cos^3 x - 3 \cos x \Rightarrow \cos^3 x = \frac{1}{4} (\cos 3x + 3 \cos x) cos 3 2 x = 1 4 ( cos 6 x + 3 cos 2 x ) 1 \boxed{\therefore \cos^3 2x = \frac{1}{4} (\cos 6x + 3 \cos 2x) \dashrightarrow 1} \\ cos 2 x = 1 + cos 2 x 2 cos 2 2 x = 1 + cos 4 x 2 2 \because \cos^2 x = \frac{1 + \cos 2x}{2} \\ \boxed{\therefore \cos^2 2x = \frac{1 + \cos 4x}{2} \dashrightarrow 2}


Substituting 1 1 and 2 : 2 :

32 sin 4 x cos 2 x = 4 [ 1 4 ( cos 6 x + 3 cos 2 x ) ( 1 + cos 4 x 2 ) cos 2 x + 1 ] = cos 6 x + 3 cos 2 x 2 2 cos 4 x 4 cos 2 x + 4 \begin{aligned} \therefore 32 \sin^4 x \cos^2 x & = & 4[\frac{1}{4} (\cos 6x + 3 \cos 2x) - (\frac{1 + \cos 4x}{2}) - \cos 2x + 1] \\ & = & \cos 6x + 3 \cos 2x - 2 - 2 \cos 4x - 4 \cos 2x + 4\end{aligned}


32 sin 4 x cos 2 x = cos 6 x 2 cos 4 x cos 2 x + 2 \therefore 32 \sin^4 x \cos^2 x = \cos 6x - 2 \cos 4x - \cos 2x + 2 \\

a = 2 \Rightarrow \boxed{a = 2}

Good solution , try to use complex numbers here.

U Z - 6 years, 3 months ago
Pi Han Goh
Mar 26, 2015

We will use the double angle formula sin 2 A = 2 sin A cos A , cos 2 A = 1 2 sin 2 A \sin 2A = 2 \sin A \cos A, \cos 2A = 1 - 2\sin^2 A and the product to sum formula 2 cos P cos Q = cos ( P + Q 2 ) cos ( P Q 2 ) 2 \cos P \cos Q = \cos \left ( \frac {P+Q}{2} \right ) \cos \left ( \frac {P-Q}{2} \right )

32 sin 4 x cos 2 x = 4 4 sin 2 x cos 2 x 2 sin 2 x = 4 ( sin 2 2 x ) ( 1 cos 2 x ) = 2 ( 1 cos 4 x ) ( 1 cos 2 x ) = 2 cos 4 x cos 2 x 2 cos 2 x 2 cos 4 x + 2 cos 6 x 2 cos 4 x cos 2 x + a = 2 cos 4 x cos 2 x 2 cos 2 x 2 cos 4 x + 2 a + cos 6 x = 2 cos 4 x cos 2 x cos 2 x + 2 = cos 6 x + cos 2 x cos 2 x + 2 a = 2 \begin{aligned} 32 \sin^4 x \cos^2 x & = & 4 \cdot 4\sin^2 x \cos^2 x \cdot 2 \sin^2 x \\ & = & 4 (\sin^2 2x )(1 - \cos 2x ) \\ & = & 2(1 - \cos 4x)(1 - \cos 2x) \\ & = & 2 \cos 4x \cos 2x - 2 \cos 2x - 2 \cos 4x + 2 \\ \cos 6x - 2\cos 4x - \cos 2x + a & = & 2 \cos 4x \cos 2x - 2 \cos 2x - 2 \cos 4x + 2 \\ a + \cos 6x & = & 2 \cos 4x \cos 2x - \cos 2x + 2 \\ & = & \cos 6x + \cos 2x - \cos 2x + 2 \\ a & = & \boxed{2} \\ \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...