3 2 sin 4 x cos 2 x = cos 6 x − 2 cos 4 x − cos 2 x + a
For constant a , the above trigonometric identity is true for all x , find the value of a .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
same solution !!!
I love how this solution has 6 upvotes... Lol.
Yep easy method!
The fastest way to get the answer.
3 2 sin 4 x cos 2 x = = = 3 2 ( 2 1 − cos 2 x ) 2 ( 2 1 + cos 2 x ) 3 2 ( 2 1 − cos 2 x ) ( 4 1 − cos 2 2 x ) 4 ( cos 3 2 x − cos 2 2 x − cos 2 x + 1 )
∵ cos 3 x = 4 cos 3 x − 3 cos x ⇒ cos 3 x = 4 1 ( cos 3 x + 3 cos x ) ∴ cos 3 2 x = 4 1 ( cos 6 x + 3 cos 2 x ) ⇢ 1 ∵ cos 2 x = 2 1 + cos 2 x ∴ cos 2 2 x = 2 1 + cos 4 x ⇢ 2
Substituting 1 and 2 :
∴ 3 2 sin 4 x cos 2 x = = 4 [ 4 1 ( cos 6 x + 3 cos 2 x ) − ( 2 1 + cos 4 x ) − cos 2 x + 1 ] cos 6 x + 3 cos 2 x − 2 − 2 cos 4 x − 4 cos 2 x + 4
∴ 3 2 sin 4 x cos 2 x = cos 6 x − 2 cos 4 x − cos 2 x + 2
⇒ a = 2
Good solution , try to use complex numbers here.
We will use the double angle formula sin 2 A = 2 sin A cos A , cos 2 A = 1 − 2 sin 2 A and the product to sum formula 2 cos P cos Q = cos ( 2 P + Q ) cos ( 2 P − Q )
3 2 sin 4 x cos 2 x cos 6 x − 2 cos 4 x − cos 2 x + a a + cos 6 x a = = = = = = = = 4 ⋅ 4 sin 2 x cos 2 x ⋅ 2 sin 2 x 4 ( sin 2 2 x ) ( 1 − cos 2 x ) 2 ( 1 − cos 4 x ) ( 1 − cos 2 x ) 2 cos 4 x cos 2 x − 2 cos 2 x − 2 cos 4 x + 2 2 cos 4 x cos 2 x − 2 cos 2 x − 2 cos 4 x + 2 2 cos 4 x cos 2 x − cos 2 x + 2 cos 6 x + cos 2 x − cos 2 x + 2 2
Problem Loading...
Note Loading...
Set Loading...
since true for all x..just sub x=0