Shrek is love. Shrek is life

You are given that Shrek is love \text{Shrek is love} and Shrek is life \text{Shrek is life} Thus, Love is life \text{Love is life} don't you agree? But let's make this more mathematical shall we? We are given the equation L O V E + I S = L I F E . LOVE + IS = LIFE. How many different combinations are there for this equation?

Details and Assumptions

  • Each distinct letter stands for a distinct number.

  • The first digit of a number cannot be 0.

  • As long as one alphabet stands for a different number than another combination, it is considered a new combination.

Example: 294 + 80 = 374 294+80=374 and 296 + 80 = 376 296+80=376 are 2 different combinations (of course, not for this equation).


The answer is 420.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Here're some restrictions for this problem.

  • S = 0 S = 0 .
  • L , E L, E can be any number leftover from the rest.
  • I = O + 1 I = O + 1 and V + I > 10 V + I > 10 to get residues from V + I V+I for 3rd digit.
  • V 9 V \neq 9 because O 9 + I = ( O + 1 ) O \overline{O9} + I = \overline{(O+1)O} from above statement.
  • O 9 O \neq 9 because residues from V + I V+I changes L L

Let's start counting! (sorry for brute force here)

  • O = 2 O = 2 gives I = 3 I = 3 and V = 8 V = 8 (1 combination)
  • O = 3 O = 3 gives I = 4 I = 4 and V = 7 , 8 V = 7, 8 (2 combinations)
  • O = 4 O = 4 gives I = 5 I = 5 and V = 6 , 7 , 8 V = 6,7,8 (3 combinations)
  • O = 5 O = 5 gives I = 6 I = 6 and V = 7 , 8 V = 7,8 (2 combinations)
  • O = 6 O = 6 gives I = 7 I = 7 and V = 4 , 5 , 8 V = 4,5,8 (3 combinations)
  • O = 7 O = 7 gives I = 8 I = 8 and V = 3 , 4 , 5 , 6 V = 3,4,5,6 (4 combinations)
  • O = 8 O = 8 gives I = 9 I = 9 and V = 2 , 3 , 4 , 5 , 6 , 7 V = 2,3,4,5,6,7 (6 combinations)

Total = 21 = 21 combinations.

So we have 5 numbers left for L L and E E because O , I , V , F , S O,I,V,F,S used it.

  • Choose 2 2 numbers from 5 5 numbers, ( 5 2 ) \displaystyle \dbinom{5}{2}
  • L , E L, E can switch order, 2 ! 2! .

Therefore, the number of ways = 21 × ( 5 2 ) × 2 ! = 420 \displaystyle = 21\times \dbinom{5}{2} \times 2! = \boxed{420} combinations!!!


"Shrek is love. Shrek is life."

One of the deepest motto of the world that Adele could roll in it.

Actually, what you given,

"Shrek is love." "Shrek is life." "Love is life." \text{"Shrek is love."} \wedge \text{"Shrek is life."} \rightarrow \text{"Love is life."}

is not true.

Counterexample,

"Cat meows." "Cat likes Samuraiwarm." "Samuraiwarm meows." \text{"Cat meows."} \wedge \text{"Cat likes Samuraiwarm."} \rightarrow \text{"Samuraiwarm meows."}

is not true...meow....oops.

Samuraiwarm Tsunayoshi - 6 years, 8 months ago

Log in to reply

Something is true. That statement is something. Therefore, that statement is true. He did not use any other verb than the linking verb is. Have a good day.

Joeie Christian Santana - 6 years, 8 months ago
Drop TheProblem
Sep 20, 2014
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#include<iostream>
#include<stdio.h>
using namespace std;
int main()
{int l,o,v,e,i,s,f,conta=0,love[10000][2],is[10000][2],t=0,exit[10000][2]; for(int h=0;h<10001;h++) for(int z=0;z<3;z++) exit[h][z]=0;
for(int l=1;l<10;l++)
   for(int o=0;o<10;o++)
      for(int v=0;v<10;v++)
         for(int e=0;e<10;e++)
            for(int i=1;i<10;i++)
               for(int s=0;s<10;s++)
                  for(int f=0;f<10;f++)
                     if(l*1000+o*100+v*10+e+i*10+s==l*1000+i*100+f*10+e 
                     && l!=o && l!=v && l!=e && l!=i && l!=s && l!=f && 
                     o!=v && o!=e && o!=i && o!=s && o!=l && o!=f &&
                     v!=e && v!=i && v!=s && v!=l && v!=f &&
                     e!=i && e!=s && e!=l && e!=f && 
                     i!=s && i!=l && i!=f && i!=e &&
                     s!=l && s!=i && s!=f && s!=e &&
                     l!=i && l!=f && l!=e &&
                     i!=f && i!=e &&
                     f!=e) 
                      conta++;
cout<<conta<<"\n";
 system("pause");
return 0;
}

conta=420

Aditya Raut
Sep 20, 2014

Sorry for the bash, here is the easiest and really untidy program, an obvious one, but that gives us the answer...

One sure thing, that we conclude s = 0 s=0 and thus, all other variables are non-zero.

1
2
3
4
5
6
7
8
for l in range(1,10):
    for o in range(1,10):
        for v in range(1,10):
            for e in range(1,10):
                for i in range(1,10):
                    for f in range(1,10):
                            if s ==0 and l!= o and l!=v and l!=e and l!=i and l!=f and o!=v and o!=e and o!=i and  o!=f and v!=e and v!=i and and v!=f and e!=i and e!=f and i!=f and  (1000*l+100*o+10*v+e+10*i+s==1000*l+100*i+10*f+e) :
                                li.append((l,o,v,e,i,s,f)) 

Then we ask for len(li) \textbf{len(li)} and the answer is 420 \boxed{420}

At least you should think of the easy digits like S = 0 S = 0 only, to make the program run faster. =__="

Samuraiwarm Tsunayoshi - 6 years, 8 months ago

Log in to reply

Thanks, updated...

Aditya Raut - 6 years, 8 months ago

From your footsteps,

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
>>> n = 0
>>> for i in itertools.permutations('0123456789'):
    a = i[0]
    b = i[1]
    c = i[2]
    d = i[3]
    e = i[4]
    f = i[5]
    g = i[6]
    if a!= '0' and e!= '0':
        if(int(a+b+c+d)+int(e+f)==int(a+e+g+d)):
            n += 1
>>>print (n/6)

420 \boxed{420}

Kartik Sharma - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...