Sick-quences (7)

1 ( 1 11 ) + ( 1 11 × 3 22 ) ( 1 11 × 3 22 × 5 33 ) + 1 - \left(\dfrac1{11} \right) + \left ( \dfrac1{11} \times \dfrac3{22} \right) - \left( \dfrac1{11} \times \dfrac3{22} \times \dfrac5{33} \right) + \cdots

If the value of the series above is equal to a b \sqrt{\dfrac ab} , where a a and b b are coprime positive integers, find a + b a+b .


The answer is 24.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Jaiveer Shekhawat
Jan 21, 2015

You could have used the taylor series of 1 1 + x \frac{1}{\sqrt{1+x}}

Kartik Sharma - 6 years, 4 months ago

Log in to reply

x = 2 11 \frac{2}{11} for ( 1 + x ) 1 2 . (1 + x)^{-\frac12}. But how did you visualized?

Lu Chee Ket - 5 years, 4 months ago
Tai Ching Kan
Jan 25, 2016

The given series can be rewritten:

1 + ( 1 11 ) ( 2 × 1 2 ) + ( 1 11 ) 2 ( 2 × 1 2 × 2 × 3 2 ) 2 ! + ( 1 11 ) 3 ( 2 × 1 2 × 2 × 3 2 × 2 × 5 2 ) 3 ! + . . . 1+(-\frac{1}{11})(-2\times\frac{-1}{2})+\frac{(-\frac{1}{11})^{2}(-2\times\frac{-1}{2}\times-2\times\frac{-3}{2})}{2!}+\frac{(-\frac{1}{11})^{3}(-2\times\frac{-1}{2}\times-2\times\frac{-3}{2}\times-2\times\frac{-5}{2})}{3!}+\;...

= 1 + ( 2 11 ) ( 1 2 ) + ( 2 11 ) 2 ( 1 2 × 3 2 ) 2 ! + . . . =1+(\frac{2}{11})(\frac{-1}{2})+\frac{(\frac{2}{11})^{2}(\frac{-1}{2}\times\frac{-3}{2})}{2!}+\;...

We are now ready to simplify this into the form ( 1 + x ) n (1+x)^{n} which equals:

1 + n x + n ( n 1 ) ( x 2 ) 2 ! + n ( n 1 ) ( n 2 ) ( x 3 ) 3 ! + . . . 1+nx+\frac{n(n-1)(x^{2})}{2!}+\frac{n(n-1)(n-2)(x^{3})}{3!}+\;... where in this case n = 1 2 n=-\frac{1}{2} and x = 2 11 x=\frac{2}{11}

So the given series can be rewritten: ( 1 + 2 11 ) 1 2 (1+\frac{2}{11})^{-\frac{1}{2}}

= ( 13 11 ) 1 2 = 11 13 =(\frac{13}{11})^{-\frac{1}{2}}=\sqrt\frac{11}{13}

So a + b = 11 + 13 = 24 a+b=11+13=\boxed{24}

Josh Banister
Jan 24, 2016

I work backwards here but it should still make sense ( 11 13 ) 1 2 = ( 13 11 ) 1 2 = ( 1 + 2 11 ) 1 2 = 1 + ( 1 2 ) 1 × 2 11 + ( 1 2 ) ( 3 2 ) 1 × 2 × ( 2 11 ) 2 + ( 1 2 ) ( 3 2 ) ( 5 2 ) 1 × 2 × 3 × ( 2 11 ) 3 + = 1 ( 1 11 ) + ( 1 11 × 3 22 ) ( 1 11 × 3 22 × 5 33 ) + \begin{aligned} \bigg(\frac{11}{13}\bigg)^{\frac{1}{2}} &= \bigg(\frac{13}{11}\bigg)^{-\frac{1}{2}} \\ &= \bigg(1 +\frac{2}{11}\bigg)^{-\frac{1}{2}} \\ &= 1 + \frac{(-\frac{1}{2})}{1} \times \frac{2}{11} + \frac{(-\frac{1}{2})(-\frac{3}{2})}{1\times 2} \times \bigg(\frac{2}{11}\bigg)^2 + \frac{(-\frac{1}{2})(-\frac{3}{2})(-\frac{5}{2})}{1\times 2 \times 3} \times \bigg(\frac{2}{11}\bigg)^3 + \dots \\ &= 1 - \left(\dfrac1{11} \right) + \left ( \dfrac1{11} \times \dfrac3{22} \right) - \left( \dfrac1{11} \times \dfrac3{22} \times \dfrac5{33} \right) + \dots \end{aligned}

The binomial expansion we're allowed to use because 2 11 < 1 \left| \frac{2}{11} \right| < 1 . By following the solution the other way, you get the answer from the question.

improve more

improve more - 2 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...