Sigma

Algebra Level 3

If f ( x ) = 4 x 4 x + 2 f(x)=\dfrac{4^{x}}{4^{x}+2} .
Compute the value of n = 1 1000 f ( n 1000 ) \displaystyle \sum_{n=1}^{1000} f\left(\dfrac{n}{1000}\right) .

Give your answer to 2 decimal places.


The answer is 500.17.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sabhrant Sachan
May 2, 2016

We have f ( x ) = 4 x 4 x + 2 Now f ( 1 x ) = 4 1 x 4 1 x + 2 f ( 1 x ) = 2 2 + 4 x f ( x ) + f ( 1 x ) = 4 x + 2 2 + 4 x = 1 Let S be the required Sum S = f ( 1 1000 ) + f ( 2 1000 ) + + f ( 1000 1000 ) S f ( 1 ) = f ( 999 1000 ) + f ( 998 1000 ) + + f ( 1 1000 ) Add Both the equations, we get 2 S f ( 1 ) = [ f ( 1 1000 ) + f ( 999 1000 ) ] + [ f ( 2 1000 ) + f ( 998 1000 ) ] + . . . + [ f ( 999 1000 ) + f ( 1 1000 ) ] 999 times + f ( 1 ) 2 S f ( 1 ) = 999 + f ( 1 ) S = 999 2 + f ( 1 ) S = 499.5 + 0.667 500.17 \text {We have } f(x)=\dfrac{4^x}{4^x+2} \\ \text {Now } f(1-x)=\dfrac{4^{1-x}}{4^{1-x}+2} \\ \implies f(1-x)=\dfrac2{2+4^x} \\ f(x)+f(1-x)=\dfrac{4^x+2}{2+4^x}=1 \\ \text{Let } \color{#3D99F6}{S} \text{ be the required Sum} \\ S=f(\dfrac1{1000})+f(\dfrac2{1000})+\cdots+f(\dfrac{1000}{1000})\\ S-f(1)=f(\dfrac{999}{1000})+f(\dfrac{998}{1000})+\cdots+f(\dfrac1{1000})\\ \text {Add Both the equations, we get } \\ 2S-f(1)=\underbrace{[f(\dfrac{1}{1000})+f(\dfrac{999}{1000})]+[f(\dfrac{2}{1000})+f(\dfrac{998}{1000})]+...+[f(\dfrac{999}{1000})+f(\dfrac{1}{1000})]}_{\color{#D61F06}{\text {999 times}}}+f(1)\\ \implies 2S-f(1)=999+f(1)\\ \implies S=\dfrac{999}2+f(1)\\ \implies S=499.5+0.667 \implies \color{#3D99F6}{500.17}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...