Sigma Ceilings

Algebra Level 4

n = 1 4096 2 3 5 7 11 n = ? \displaystyle\sum _{n = 1}^{ 4096 }{ \left\lceil \frac { 2 }{ \left\lceil \frac { 3 }{ \left\lceil \frac { 5 }{ \left\lceil \frac { 7 }{ \left\lceil \frac { 11 }{ n } \right\rceil } \right\rceil } \right\rceil } \right\rceil } \right\rceil } =?

Note : x \left\lceil x \right\rceil denotes the ceiling function.


The answer is 4099.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let the sum be S S and a n = 11 n a_n = \left \lceil \dfrac{11}{n} \right \rceil , b n = 7 a b_n = \left \lceil \dfrac{7}{a} \right \rceil , c n = 5 b c_n = \left \lceil \dfrac{5}{b} \right \rceil , d n = 3 c d_n = \left \lceil \dfrac{3}{c} \right \rceil and x n = 2 d x_n = \left \lceil \dfrac{2}{d} \right \rceil .

Therefore, S = n = 1 4096 2 3 5 7 11 n = n = 1 4096 x n S = \displaystyle \sum_{n=1}^{4096} \lceil \frac{2}{\lceil \frac{3}{\lceil \frac{5}{ \lceil \frac{7}{\lceil \frac{11}{n} \rceil} \rceil} \rceil} \rceil} \rceil = \sum_{n=1}^{4096} x_n

We note that there are only 6 6 values of a n a_n for all n n , therefore x n x_n takes only limited values.

n a n b n c n d n x n 1 11 1 5 1 2 2 6 2 3 1 2 3 4 2 3 1 2 4 to 5 3 3 2 2 1 6 to 10 2 4 2 2 1 11 to 4096 1 7 1 3 1 \begin{array} {cccccc} n & a_n & b_n & c_n & d_n & x_n \\ \hline 1 & 11 & 1 & 5 & 1 & 2 \\ 2 & 6 & 2 & 3 & 1 & 2 \\ 3 & 4 & 2 & 3 & 1 & 2 \\ 4 \text{ to } 5 & 3 & 3 & 2 & 2 & 1 \\ 6 \text{ to } 10 & 2 & 4 & 2 & 2 & 1 \\ 11 \text{ to } 4096 & 1 & 7 & 1 & 3 & 1 \end{array}

Therefore, S = n = 1 4096 x n = n = 1 3 2 + n = 4 4096 1 = 6 + 4093 = 4099 S = \displaystyle \sum_{n=1}^{4096} x_n = \sum_{n=1}^{3} 2 + \sum_{n=4}^{4096} 1 = 6 + 4093 = \boxed{4099}

Aditya Dhawan
Mar 7, 2016

N o t e t h a t t h e f i n a l t e r m b e l o w 2 w i l l b e a p o s i t i v e i n t e g e r , s i n c e R a n g e ( x ) = Z + x R + I f t h e d e n o m i n a t o r i s = 1 , t h e n t h e f i n a l t e r m w i l l b e 2. I f i t i s g r e a t e r t h a n 1 , t h e n t h e f i n a l t e r m w i l l b e 1. T h u s w e n o t e a l l t e r m s = X i = E i t h e r 1 o r 2 N o w l e t u s d e t e r m i n e t h e m a x ( n ) f o r w h i c h X i = 2 S i n c e X i = 2 , t h e f i n a l t e r m b e l o w 2 = 1 T h u s t h e t e r m b e l o w 3 m u s t b e g r e t e r t h a n t h a n o r e q u a l t o 3 T h e t e r m b e l o w 5 m u s t b e l e s s t h a n o r e q u a l t o 2 T h e t e r m b e l o w 7 m u s t b e g r e a t e r t h a n o r e q u a l t o 4 T h u s 11 n 4 n = { 1 , 2 , 3 } T h e r f o r e S = 2 + 2 + 2 + 4093 × 1 = 4099 Note\quad that\quad the\quad final\quad term\quad below\quad 2\quad will\quad be\quad a\quad positive\quad integer,\quad since\quad Range(\left\lceil x \right\rceil )=\quad { Z }^{ + }\quad \forall \quad x\quad \in \quad { R }^{ + }\\ If\quad the\quad denominator\quad is\quad =\quad 1,\quad then\quad the\quad final\quad term\quad will\quad be\quad 2.\quad \\ If\quad it\quad is\quad greater \quad\ than \quad 1,\quad then\quad the\quad final\quad term\quad will\quad be\quad 1.\\ Thus\quad we\quad note\quad all\quad terms=\quad { X }_{ i }\quad =\quad Either\quad 1\quad or\quad 2\\ Now\quad let\quad us\quad determine\quad the\quad max(n)\quad for\quad which\quad { X }_{ i }=\quad 2\\ \\ Since\quad { X }_{ i }=2,\quad the\quad final\quad term\quad below\quad 2\quad =1\\ Thus\quad the\quad term\quad below\quad 3\quad must\quad be\quad greter\quad than\quad than\quad or\quad equal\quad to\quad 3\\ \Longrightarrow \quad The\quad term\quad below\quad 5\quad must\quad be\quad less\quad than\quad or\quad equal\quad to\quad 2\\ \Longrightarrow The\quad term\quad below\quad 7\quad must\quad be\quad greater\quad than\quad or\quad equal\quad to\quad 4\\ Thus\quad \left\lceil \frac { 11 }{ n } \right\rceil \quad \ge 4\Longrightarrow \quad n=\left\{ 1,2,3 \right\} \\ Therfore\quad S=\quad 2+2+2+4093\times 1=\boxed { 4099 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...