Sigma Floors

Algebra Level 4

1 4096 n 11 7 5 3 2 = ? \displaystyle\sum _{ 1 }^{ 4096 }{ \left\lfloor \frac { \left\lfloor \frac { \left\lfloor \frac { \left\lfloor \frac { \left\lfloor \frac { n }{ 11 } \right\rfloor }{ 7 } \right\rfloor }{ 5 } \right\rfloor }{ 3 } \right\rfloor }{ 2 } \right\rfloor } =?

Notation : \lfloor \cdot \rfloor denotes the floor function .


The answer is 1787.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let the sum be S S , then we have:

S = n = 1 4096 n 11 7 5 3 2 = n = 1 4096 n 11 × 7 × 5 × 3 × 2 = n = 1 4096 n 2310 = n = 2310 4069 1 = 4096 2309 = 1787 \begin{aligned} S & = \sum_{n=1}^{4096} \lfloor \frac{\lfloor \frac{\lfloor \frac{\lfloor \frac{\lfloor \frac{n}{11} \rfloor}{7} \rfloor}{5} \rfloor}{3} \rfloor}{2} \rfloor \\ & = \sum_{n=1}^{4096} \left \lfloor \frac{n}{11\times 7 \times 5 \times 3 \times 2} \right \rfloor \\ & = \sum_{n=1}^{4096} \left \lfloor \frac{n}{2310} \right \rfloor \\ & = \sum_{n=2310}^{4069} 1 = 4096 - 2309 = \boxed{1787} \end{aligned}

Nice!Learned a new property of floors today.

Rohit Ner - 5 years, 3 months ago

How can one prove this identity? Although I got the answer wrong ( silly mistake), I had the following approach:-

Let the term above 2 be A, the term above 3 be B, above 5 be C, above 7 be D.

To obtain a nonzero term, A must be greater than or equal to 2.

Let A=2, then B must be greater than or equal to 6.

Then, C would have to be greater or equal to 30.

Then D would have to be greater than or equal to 210.

Then N would be greater than equal to 210(11)=2310

Thus the least value of N is= 2310

Similarly for A=2, we obtain min(N)=4620

Thus All values of the term for n=2310 to 4096=1

Thus S= n = 2310 4096 1 = 1 × 1787 = 1787 \sum _{ n=2310 }^{ 4096 }{ 1 } =\quad 1\times 1787=\quad \boxed { 1787 }

Aditya Dhawan - 5 years, 3 months ago

Log in to reply

Work backward. Let a = b 2 a = \lfloor \frac{b}{2} \rfloor . The minimum b b that satisfies the equation is 2 a 2a . Similarly, b = c 3 c = 3 b = 2 × 3 a b = \lfloor \frac{c}{3} \rfloor \Rightarrow c = 3b = 2 \times 3 a ; c = d 5 d = 5 c = 2 × 3 × 5 a c = \lfloor \frac{d}{5} \rfloor \Rightarrow d = 5c = 2 \times 3 \times 5 a ; d = e 7 e = 7 d = 2 × 3 × 5 × a d = \lfloor \frac{e}{7} \rfloor \Rightarrow e = 7d = 2 \times 3 \times 5 \times a ; and e = n 11 n = 11 e = 2 × 3 × 5 × 7 × 11 a = 2310 a e = \lfloor \frac{n}{11} \rfloor \Rightarrow n = 11e = 2 \times 3 \times 5 \times 7 \times 11 a = 2310 a .

Therefore, for a = 1 a=1 , the minimum n = 2310 n = 2310 , a = 0 a=0 when n < 2310 n < 2310 and for a = 2 a=2 , the minimum n = 4620 n=4620 . So we have:

S = n = 1 4096 n 11 7 5 3 2 = n = 1 2309 n 11 7 5 3 2 + n = 2310 4096 n 11 7 5 3 2 = 2309 ( 0 ) + ( 4096 2309 ) ( 1 ) = 1787 \begin{aligned} S & = \sum_{n=1}^{4096} \lfloor \frac{\lfloor \frac{\lfloor \frac{\lfloor \frac{\lfloor \frac{n}{11} \rfloor}{7} \rfloor}{5} \rfloor}{3} \rfloor}{2} \rfloor \\ & = \sum_{n=1}^{2309} \lfloor \frac{\lfloor \frac{\lfloor \frac{\lfloor \frac{\lfloor \frac{n}{11} \rfloor}{7} \rfloor}{5} \rfloor}{3} \rfloor}{2} \rfloor + \sum_{n=2310}^{4096} \lfloor \frac{\lfloor \frac{\lfloor \frac{\lfloor \frac{\lfloor \frac{n}{11} \rfloor}{7} \rfloor}{5} \rfloor}{3} \rfloor}{2} \rfloor \\ & = 2309(0) + (4096-2309)(1) = \boxed{1787} \end{aligned}

Chew-Seong Cheong - 5 years, 3 months ago

Log in to reply

That is a much better way of putting it. Thank you sir!

Aditya Dhawan - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...