Sigma? Sum! 3

Algebra Level 1

If r = 1 n T r = n ( n + 1 ) ( n + 2 ) ( n + 3 ) 8 \displaystyle \sum_{r=1}^{n} T_r = \dfrac{n(n+1)(n+2)(n+3)}{8} , find the value of r = 1 50 1 T r \displaystyle \sum_{r=1}^{50} \dfrac{1}{T_r} up to 3 decimal places.


The answer is 0.499.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
May 21, 2015

r = 1 n T r = n ( n + 1 ) ( n + 2 ) ( n + 3 ) 8 \displaystyle \sum_{r=1}^n {T_r} = \frac{n(n+1)(n+2)(n+3)}{8}

T k = r = 1 k T r r = 1 k 1 T r = k ( k + 1 ) ( k + 2 ) ( k + 3 ) 8 ( k 1 ) k ( k + 1 ) ( k + 2 ) 8 = k ( k + 1 ) ( k + 2 ) ( k + 3 k + 1 ) 8 = k ( k + 1 ) ( k + 2 ) 2 \begin{aligned} \Rightarrow T_k & = \displaystyle \sum_{r=1}^k {T_r} - \sum_{r=1}^{k-1} {T_r} \\ & = \frac{k(k+1)(k+2)(k+3)}{8} - \frac{(k-1)k(k+1)(k+2)}{8} \\ & = \frac{k(k+1)(k+2)(k+3 - k +1)}{8} \\ & = \frac{k(k+1)(k+2)}{2} \end{aligned}

r = 1 50 1 T r = r = 1 50 2 r ( r + 1 ) ( r + 2 ) = r = 1 50 ( 1 r 2 r + 1 + 1 r + 2 ) = r = 1 50 1 r r = 2 51 1 r r = 2 51 1 r + r = 3 52 1 r = 1 1 1 51 1 2 + 1 52 = 0.4996 \begin{aligned} \Rightarrow \displaystyle \sum_{r=1}^{50} {\frac{1}{T_r}} & = \sum_{r=1}^{50} {\frac{2}{r(r+1)(r+2)}} \\ & = \sum_{r=1}^{50} {\left( \frac{1}{r} - \frac{2}{r+1} + \frac{1}{r+2}\right)} \\ & = \sum_{r=1}^{50} {\frac{1}{r}} - \sum_{r=2}^{51} {\frac{1}{r}} - \sum_{r=2}^{51} {\frac{1}{r}} + \sum_{r=3}^{52} {\frac{1}{r}} \\ & = \frac{1}{1} - \frac{1}{51} - \frac{1}{2} + \frac{1}{52} \\ & = \boxed{0.4996} \end{aligned}

did exactly the same way.

Samarth Agarwal - 5 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...