Trigonometry! 6

Geometry Level 4

Simplify r = 1 n 1 cos 2 ( r π n ) . \displaystyle \sum_{r=1}^{n-1} \cos^{2} \left(\frac {r \pi}{n}\right).


This problem is part of the set Trigonometry .

n 2 \frac {n}{2} n + 1 2 \frac {n+1}{2} n 1 2 \frac {n-1}{2} n 2 2 \frac {n-2}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mas Mus
Mar 13, 2015

Let S n 1 = r = 1 n 1 cos 2 ( r π n ) S_{n-1}=\displaystyle \sum_{r=1}^{n-1} \cos^{2} \left(\frac {r \pi}{n}\right) , n = 2 , 3 , 4 , n=2, 3, 4, \dots .

S 1 = cos 2 π 2 = 0 S_{1}=\cos^{2} \frac { \pi}{2}=0

S 2 = cos 2 π 3 + cos 2 2 π 3 = 1 4 + 1 4 = 1 2 S_{2}=\cos^{2} \frac { \pi}{3}+\cos^{2} \frac {2 \pi}{3}=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}

S 3 = cos 2 π 4 + cos 2 2 π 4 + cos 2 3 π 4 = 1 2 + 0 + 1 2 = 1 S_{3}=\cos^{2} \frac { \pi}{4}+\cos^{2} \frac {2 \pi}{4}+\cos^{2} \frac {3 \pi}{4}=\frac{1}{2}+0+\frac{1}{2}=1

S 4 = cos 2 π 5 + cos 2 2 π 5 + cos 2 3 π 5 + cos 2 4 π 5 = 2 cos 2 π 5 + 2 cos 2 2 π 5 = ( 1 + cos 2 π 5 ) + ( 1 + cos 4 π 5 ) = 2 + 2 cos 3 π 5 cos π 5 = 2 + cos 3 π 5 sin 2 π 5 sin π 5 = 2 + sin 5 π 5 sin π 5 2 sin π 5 = 2 1 2 = 3 2 \begin{aligned}S_{4} &=\cos^{2} \frac { \pi}{5}+\cos^{2} \frac {2 \pi}{5}+\cos^{2} \frac {3 \pi}{5}+\cos^{2} \frac {4 \pi}{5}\\ &=2\cos^{2} \frac { \pi}{5}+2\cos^{2} \frac {2 \pi}{5}\\ &=(1+\cos\frac{2\pi}{5})+(1+\cos\frac{4\pi}{5})=2+2\cos\frac{3\pi}{5}\cos\frac{\pi}{5}\\ &=2+\frac{\cos\frac{3\pi}{5} \sin\frac{2\pi}{5}}{\sin\frac{\pi}{5}}=2+\frac{\sin\frac{5\pi}{5}-\sin\frac{\pi}{5}}{2\sin\frac{\pi}{5}}\\ &=2-\frac{1}{2}=\frac{3}{2}\end{aligned}

S 5 = cos 2 π 6 + cos 2 2 π 6 + cos 2 3 π 6 + cos 2 4 π 6 + cos 2 5 π 6 = 3 4 + 0 + 1 4 + 0 + 1 4 + 3 4 = 2 \begin{aligned}S_{5} &=\cos^{2} \frac { \pi}{6}+\cos^{2} \frac {2 \pi}{6}+\cos^{2} \frac {3 \pi}{6}+\cos^{2} \frac {4 \pi}{6}+\cos^{2} \frac {5 \pi}{6}\\ &=\frac{3}{4}+0+\frac{1}{4}+0+\frac{1}{4}+\frac{3}{4}=2\end{aligned}

Now, we have S 1 , S 2 , S 3 , S 4 , S 5 , , S n 1 = 0 , 1 2 , 1 , 3 2 , 2 , , S n 1 S_1, S_2, S_3, S_4, S_5, \dots, S_{n-1}=0, \frac{1}{2}, 1, \frac{3}{2}, 2, \dots, S_{n-1} , an arithmetic progression which has initial term 0 and common difference 1 2 \frac{1}{2} .

So, S n 1 = 0 + ( ( n 1 ) 1 ) × 1 2 = n 2 2 S_{n-1}=0+((n-1)-1) \times \frac{1}{2}=\boxed{\frac{n-2}{2}} .

r = 1 n 1 c o s 2 ( r π n ) \sum_{r=1}^{n-1} cos^2(\frac{r\pi}{n})

= r = 1 n 1 1 + c o s 2 π r n 2 = \sum_{r=1}^{n-1} \frac{1+cos\frac{2\pi r }{n}}{2}

= n 1 2 + 1 2 s i n ( ( n 1 ) 2 π n ) c o s ( 2 π ( 1 + n 1 ) 2 n ) s i n ( 2 π n ) = \frac{n-1}{2} + \frac{1}{2} \frac{sin(\frac{(n-1)2\pi}{n}) cos(\frac{2\pi(1+n-1)}{2n})}{sin(\frac{2\pi}{n})}

= n 1 1 2 = \frac{n-1-1}{2}

= n 2 2 = \frac{n-2}{2}

Anurag Pandey - 4 years, 5 months ago

An extremely nice solution. Your approach was easy to understand. Also, I love the way you calculated S4. Keep up the good work :D

Pranav Saxena - 4 years, 11 months ago
Yogesh Shivran
Jan 4, 2015

I did it by hit and trial. Just put n=2, we match it with option. But i cann't solve it by generalisation.

r = 1 n 1 1 + cos 2 r π 2 \displaystyle \sum_{r=1}^{n-1} \dfrac{1 + \cos2r\pi}{2}

r = 1 n 1 1 2 + 1 2 r = 1 n 1 cos 2 r π n \displaystyle \sum_{r=1}^{n-1} \dfrac{1}{2} + \dfrac{1}{2} \displaystyle \sum_{r=1}^{n-1} \cos\dfrac{2r\pi}{n}

= n 1 2 + 1 4 sin r π r = 1 n 1 2 cos 2 r π n sin r π n = \dfrac{n - 1}{2} + \dfrac{1}{4 \sin r\pi} \displaystyle \sum_{r=1}^{n-1} 2\cos\dfrac{2r\pi}{n}\sin\dfrac{r\pi}{n}

= n 1 2 + 1 4 sin r π r = 1 n 1 sin 3 r π n s i n r π n = \dfrac{n - 1}{2} + \dfrac{1}{4 \sin r\pi} \displaystyle \sum_{r=1}^{n-1} \sin \dfrac{3r\pi}{n} - sin\dfrac{r\pi}{n}

= n 1 2 1 2 = \dfrac{n - 1}{2} - \dfrac{1}{2}

U Z - 6 years, 4 months ago

Log in to reply

Can you please explain the third last step ? Thanks.

Abhijeet Verma - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...