Significant Squareroots

Algebra Level 4

P + 3 Q + 5 R + 15 S = 1 1 + 3 + 5 P + \sqrt{3} Q + \sqrt{5}R +\sqrt{15}S = \frac{1}{1 + \sqrt{3} + \sqrt{5}}

The equation above holds true for P = A B P = \dfrac AB , where A A and B B are positive coprime integers. Find A + B A+B .


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

1 1 + 3 + 5 = 1 + 3 5 ( 1 + 3 + 5 ) ( 1 + 3 5 ) = 1 + 3 5 2 3 1 = ( 1 + 3 5 ) ( 2 3 + 1 ) ( 2 3 1 ) ( 2 3 + 1 ) = 7 + 3 3 5 2 15 11 \begin{aligned} \frac 1{1+\sqrt 3+\sqrt 5} & = \frac \blue{1+\sqrt 3 - \sqrt 5}{(1+\sqrt 3+\sqrt 5) \blue{(1+\sqrt 3-\sqrt 5)}} \\ & = \frac {1+\sqrt 3 - \sqrt 5}{2\sqrt 3-1} \\ & = \frac {(1+\sqrt 3 - \sqrt 5)\blue{(2\sqrt 3+1)}}{(2\sqrt 3-1)\blue{(2\sqrt 3+1)}} \\ & = \frac {7+3\sqrt 3 - \sqrt 5 - 2\sqrt{15}}{11} \end{aligned}

Therefore P = 7 11 P = \dfrac 7{11} and A + B = 7 + 11 = 18 A+B = 7 + 11 = \boxed{18} .

nice and understandable solution sir

Razing Thunder - 11 months, 1 week ago

Log in to reply

Glad that you like it.

Chew-Seong Cheong - 11 months, 1 week ago

Did by the same way.

A Former Brilliant Member - 11 months, 1 week ago
X X
Jul 9, 2020

1 1 + 3 + 5 = ( 1 + 3 5 ) ( 1 3 + 5 ) ( 1 + 3 + 5 ) ( 1 + 3 + 5 ) ( 1 + 3 5 ) ( 1 3 + 5 ) ( 1 + 3 + 5 ) = 7 + 3 3 5 2 15 11 \frac1{1+\sqrt{3}+\sqrt{5}}=\frac{(1+\sqrt{3}-\sqrt{5})(1-\sqrt{3}+\sqrt{5})(-1+\sqrt{3}+\sqrt{5})}{(1+\sqrt{3}+\sqrt{5})(1+\sqrt{3}-\sqrt{5})(1-\sqrt{3}+\sqrt{5})(-1+\sqrt{3}+\sqrt{5})}=\frac{7+3\sqrt{3}-\sqrt{5}-2\sqrt{15}}{11}

(Note that P , Q , R , S P,Q,R,S are rational numbers, or there will be infinite solutions, so perhaps you should add this in your problem)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...