Signum+Floor+Integration

Calculus Level 3

10 0 2 x x 3 x 2 x 3 x x d x = ? \large \int_{-10}^0 \frac {\left|\frac {2\lfloor x \rfloor}{\lfloor x \rfloor - 3x} \right|}{\frac {2\lfloor x \rfloor}{3x - \lfloor x \rfloor}} dx =\ ?

Notations:


The answer is 9.333333333.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Mar 17, 2018

Note that the limits of the integral is x 0 x\le 0 . For x 0 x\le 0 , 2 x 0 2\lfloor x \rfloor \le 0 and x 3 x { 0 if x 1 3 > 0 if x < 1 3 \lfloor x \rfloor - 3x \begin{cases} \le 0 \text{ if }x \ge - \frac 13 \\ > 0 \text{ if }x < - \frac 13 \end{cases} 2 x x 3 x = { 2 x x 3 x if x 1 3 2 x 3 x x if x < 1 3 \implies \left|\dfrac {2\lfloor x \rfloor}{\lfloor x \rfloor - 3x}\right| = \begin{cases} \dfrac {2\lfloor x \rfloor}{\lfloor x \rfloor - 3x} \text{ if }x \ge - \frac 13 \\ \dfrac {2\lfloor x \rfloor}{3x - \lfloor x \rfloor} \text{ if }x < - \frac 13 \end{cases} . Therefore,

I = 10 0 2 x x 3 x 2 x 3 x x d x = 1 3 0 2 x x 3 x 2 x 3 x x d x + 10 1 3 2 x 3 x x 2 x 3 x x d x = 1 3 0 d x + 10 1 3 d x = x 1 3 0 + x 10 1 3 = 0 1 3 1 3 + 10 = 28 3 9.333 \begin{aligned} I & = \int_{-10}^0 \frac {\left|\frac {2\lfloor x \rfloor}{\lfloor x \rfloor - 3x}\right|}{\frac {2\lfloor x \rfloor}{3x - \lfloor x \rfloor}} dx \\ & = \int_{-\frac 13}^0 \frac {\frac {2\lfloor x \rfloor}{\lfloor x \rfloor - 3x}}{\frac {2\lfloor x \rfloor}{3x - \lfloor x \rfloor}} dx + \int_{-10}^{-\frac 13} \frac {\frac {2\lfloor x \rfloor}{3x - \lfloor x \rfloor}}{\frac {2\lfloor x \rfloor}{3x - \lfloor x \rfloor}} dx \\ & = - \int_{-\frac 13}^0 dx + \int_{-10}^{-\frac 13} dx \\ & = - x\ \bigg|_{-\frac 13}^0 + x\ \bigg|_{-10}^{-\frac 13} \\ & = - 0 - \frac 13 - \frac 13 + 10 \\ & = \frac {28}3 \approx \boxed{9.333} \end{aligned}

@Ayush Mishra , you can see the LaTex codes by placing your mouse cursor on the formulas. You can also click the pull-down menu " \cdots More" at the bottom of the answer section and select "Toggle LaTex". You should use \ [ and \ ] (no space between the backslash and brackets) instead of \ ( ). Then \ [\int_0^1\ ] becomes 0 1 \int_0^1

If you want to use \ ( \ ) you should add \displaystyle in front, see 0 1 \displaystyle \int_0^1 . Also do not need so many braces { } for example \frac 12 1 2 \frac 12 , if you want not reduced size fraction \dfrac {11}2 11 2 \dfrac {11}2 (d for display). or \cfrac \pi 4 π 4 \cfrac \pi 4 . See I did not use { }. Do not use \left and \right else you will make the brackets too large. See what you codes did Find the value of the integral 10 0 2 x x 3 x ( 2 x 3 x x ) d x \int _{ -10 }^{ 0 }{ \frac { \left| \frac { { 2 }\left\lfloor x \right\rfloor }{ { \left\lfloor x \right\rfloor }-{ { 3 }{ x } } } \right| }{ \left( \frac { { 2 }{ \left\lfloor x \right\rfloor } }{ { 3 }{ x }-{ \left\lfloor x \right\rfloor } } \right) } } { dx } . The floor function brackets are too big.

Chew-Seong Cheong - 3 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...