Silence Of The Sum

Calculus Level 3

S = r = 1 [ 1 2 r ( r + 1 ) 2 + 1 r ( r + 1 ) ] S=\sum_{r=1}^{\infty}\left[\dfrac{1}{2^r} \cdot\dfrac{(r+1)^2+1}{r(r+1)}\right]


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

U Z
Oct 30, 2014

T n = 1 2 r . ( r + 1 ) 2 + 1 r ( r + 1 ) T_{n} = \frac{1}{2^{r}}. \frac{(r + 1)^{2} + 1}{r(r + 1)}

= 1 2 r . ( r + 1 ) 2 1 + 2 r ( r + 1 ) =\frac{1}{2^{r}}. \frac{(r + 1)^{2} -1 + 2}{r(r + 1)}

= 1 2 r ( r ( r + 2 ) r ( r + 1 ) + 2 r ( r + 1 ) ) = \frac{1}{2^{r}} (\frac{r(r + 2) }{r(r + 1)} + \frac{2}{r(r + 1)})

= 1 2 r ( r ( r + 1 ) + 2 r + 1 + 2 r 2 r + 1 ) = \frac{1}{2^{r}} (\frac{r }{(r + 1)} + \frac{2}{r + 1} + \frac{2}{r} - \frac{2}{r + 1})

= 1 2 r ( r + 1 1 ( r + 1 ) + 2 r + 1 + 2 r 2 r + 1 ) = \frac{1}{2^{r}} (\frac{r + 1 - 1 }{(r + 1)} + \frac{2}{r + 1} + \frac{2}{r} - \frac{2}{r + 1})

= 1 2 r ( 1 1 ( r + 1 ) + 2 r + 1 + 2 r 2 r + 1 ) = \frac{1}{2^{r}} ( 1 - \frac{1 }{(r + 1)} + \frac{2}{r + 1} + \frac{2}{r} - \frac{2}{r + 1})

= 1 2 r + 1 2 r ( 2 r 1 r + 1 ) = \frac{1}{2^{r}} + \frac{1}{2^r}(\frac{2}{r} - \frac{1}{r + 1})

adding all

we get

= 1 2 2 1 + 1 2 ( 2 1 1 2 ) + 1 2 2 ( 2 2 1 3 ) + 1 2 3 ( 2 3 1 4 ) + . . . . . . . . . . . . . . . . . . . . . . . . . . . = \frac{1}{2} \frac{2}{1} + \frac{1}{2}(\frac{2}{1} - \frac{1}{2}) + \frac{1}{2^{2}}(\frac{2}{2} - \frac{1}{3}) + \frac{1}{2^{3}}(\frac{2}{3} - \frac{1}{4}) + ...........................

1 + 1 1 2.2 + 1 2.2 . . . . . . . . . . . . . . . . . . . . . . 1 + 1 - \frac{1}{2.2} + \frac{1}{2.2} ......................

= 2 = 2

OR Simply open the square in the numerator and do the above you will get the answer

Rajen Kapur
Oct 28, 2014

It is a simple summation of rth term 2^(-1) { 1 + (2/r) - (1/(r + 1))} , giving 2 sum as plus minus terms cancel in next term. Check by putting values for r.

Anish Kelkar
Nov 1, 2014

S = i = 1 1 2 i + j = 1 1 j 2 j 1 1 ( j + 1 ) 2 j = 1 + 1 = 2 S=\sum _{ i=1 }^{ \infty }{ \frac { 1 }{ { 2 }^{ i } } } +\sum _{ j=1 }^{ \infty }{ \frac { 1 }{ j{ 2 }^{ j-1 } } -\frac { 1 }{ (j+1){ 2 }^{ j } } } =1+1=2\quad Note the second summation is converging as it is of the form f(k)-f(k+1)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...