Bleak Relationship #1

Algebra Level 3

8 1 x + 8 1 y + 3 1 x + 3 1 y = 36 \large 81^x + 81^y + 3^{\frac1x} + 3^{\frac1y} = 36

How many ordered pairs of ( x , y ) (x,y) satisfy the equation above if x y > 0 xy>0 ?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 11, 2015

We note that L H S > 0 LHS > 0 for x y > 0 xy > 0 . Then,

8 1 x + 8 1 y + 3 1 x + 3 1 y 4 8 1 x ˙ 8 1 y ˙ 3 1 x ˙ 3 1 y 4 4 3 4 x ˙ 3 4 y ˙ 3 1 x ˙ 3 1 y 4 \begin{aligned} 81^x+81^y + 3^{\frac{1}{x}} + 3^{\frac{1}{y}} & \ge 4 \sqrt[4]{81^x \dot{} 81^y \dot{} 3^{\frac{1}{x}} \dot{} 3^{\frac{1}{y}}} \\ & \ge 4 \sqrt[4]{3^{4x} \dot{} 3^{4y} \dot{} 3^{\frac{1}{x}} \dot{} 3^{\frac{1}{y}}} \end{aligned}

Equality happens and L H S LHS is minimum when 3 4 x = 3 4 y = 3 1 x = 3 1 y \space 3^{4x} = 3^{4y} = 3^{\frac{1}{x}} = 3^{\frac{1}{y}}

4 x = 1 x x 2 = 1 4 x = y = 1 2 \Rightarrow 4 x = \dfrac{1}{x} \quad \Rightarrow x^2 = \frac{1}{4} \quad \Rightarrow x = y = \frac{1}{2}

8 1 x + 8 1 y + 3 1 x + 3 1 y 4 3 2 ˙ 3 2 ˙ 3 2 ˙ 3 2 4 36 \begin{aligned} 81^x+81^y + 3^{\frac{1}{x}} + 3^{\frac{1}{y}} & \ge 4 \sqrt[4]{3^{2} \dot{} 3^{2} \dot{} 3^{2} \dot{} 3^{2}} \\ & \ge 36 \end{aligned}

This implies that 8 1 x + 8 1 y + 3 1 x + 3 1 y = 36 81^x+81^y + 3^{\frac{1}{x}} + 3^{\frac{1}{y}} = 36 if and only if x = y = 1 2 x = y = \frac{1}{2} and therefore, there is only 1 \boxed{1} solution.

Moderator note:

It's better to mention that you applied the AM-GM property.

Why must x y > 0 xy> 0 hold? What happens when the constraint x y > 0 xy> 0 is relaxed?

Prajwal Krishna
Nov 3, 2016

3^(4x)+3^(1/x) >=2[3^(4x+1/x)]. By AM >=GM Further 4x+1/x >= 2[(4x)(1/x)]^1/2 4x+1/x >= 2 3^(4x)+3^(1/x) >=18

Equality holds for 4x=1/x x=1/2 , similarly y=1/2 Therefore for minimum sum of 36 equality holds and only ordered pair is (1/2, 1/2)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...