Similar Rectangles

Geometry Level 3

Rectangle A B C D ABCD has A B = 6 \overline{AB}= 6 and B C = 4 \overline{BC} = 4 . It is depicted in the above figure. You draw E F EF parallel to B C BC and 1 1 unit to its left. Now you draw rectangle G H I J GHIJ that is similar to rectangle A B C D ABCD inscribed in the shorter rectangle A F E D AFED . If the ratio of the area of G H I J GHIJ to the area of A B C D ABCD is p q \dfrac{p}{q} , where p p and q q are positive coprime integers, find p + q p + q .

Note: Similar rectangles have the same length to width ratio.


The answer is 153.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Sathvik Acharya
Dec 26, 2020

Since rectangle G H I J GHIJ is similar to rectangle A B C D ABCD , G H H I = A B B C = 3 2 \frac{GH}{HI}=\frac{AB}{BC}=\frac{3}{2} Simple angle chasing gives, D G H = A H I = F I J = E J G \angle DGH=\angle AHI=\angle FIJ=\angle EJG Combining this with G H = J I GH=JI\; and G J = H I \;GJ=HI , we get the following relations: G D H I F J , H A I J E G \triangle GDH\cong \triangle IFJ\;,\;\;\; \triangle HAI\cong \triangle JEG G D H I F J H A I J E G \triangle GDH\sim \triangle IFJ\sim \triangle HAI\sim \triangle JEG Let D H = x A H = 4 x DH=x\implies AH=4-x \; and A I = y F I = G D = 5 y \;AI=y\implies FI=GD=5-y .

Since G D H H A I \triangle GDH\sim \triangle HAI , x y = 5 y 4 x = 3 2 \;\;\;\;\;\;\;\;\frac{x}{y}=\frac{5-y}{4-x}=\frac{3}{2} x = 6 5 , y = 4 5 \implies x=\frac{6}{5}\;,\;y=\frac{4}{5} Using the Pythagorean Theorem , G H 2 = G D 2 + D H 2 = x 2 + ( 5 y ) 2 = 477 25 GH^2=GD^2+DH^2=x^2+(5-y)^2=\frac{477}{25} The ratio of the area of G H I J GHIJ to the area of A B C D ABCD is, [ G H I J ] [ A B C D ] = ( G H A B ) 2 = 477 25 36 = 53 100 \frac{[GHIJ]}{[ABCD]}=\left (\frac{GH}{AB}\right )^2=\frac{\large \frac{477}{25}}{36}=\frac{53}{100}

Therefore, p = 53 , q = 100 p + q = 153 . p=53, q=100\implies p+q=\boxed{153}.

Chew-Seong Cheong
Dec 27, 2020

Let H G = I J = x HG = IJ = x and J I F = G J E = θ \angle JIF = \angle GJE = \theta . Then H I = G J = 2 3 x HI = GJ = \dfrac 23 x and

{ A I + I F = A F 2 3 x sin θ + x cos θ = 5 2 x sin θ + 3 x cos θ = 15 . . . ( 1 ) E J + J F = E F 2 3 x cos θ + x sin θ = 4 2 x cos θ + 3 x sin θ = 12 . . . ( 2 ) \begin{cases} AI + IF = AF & \implies \dfrac 23 x \sin \theta + x \cos \theta = 5 & \implies 2 x \sin \theta + 3x \cos \theta = 15 & ...(1) \\ EJ + JF = EF & \implies \dfrac 23 x \cos \theta + x \sin \theta = 4 & \implies 2 x \cos \theta + 3x \sin \theta = 12 & ...(2) \end{cases}

From ( 1 ) ( 2 ) \dfrac {(1)}{(2)} :

2 x sin θ + 3 x cos θ 2 x cos θ + 3 x sin θ = 15 12 2 sin θ + 3 cos θ 2 cos θ + 3 sin θ = 5 4 8 sin θ + 12 c o s θ = 10 cos θ + 15 sin θ 2 cos θ = 7 sin θ tan θ = 2 7 sin θ = 2 53 , cos θ = 7 53 \begin{aligned} \frac {2 x \sin \theta + 3x \cos \theta}{2 x \cos \theta + 3x \sin \theta} & = \frac {15}{12} \\ \frac {2 \sin \theta + 3 \cos \theta}{2 \cos \theta + 3 \sin \theta} & = \frac 54 \\ 8 \sin \theta + 12 cos \theta & = 10 \cos \theta + 15 \sin \theta \\ 2 \cos \theta & = 7 \sin \theta \\ \implies \tan \theta & = \frac 27 & \small \blue{\implies \sin \theta = \frac 2{\sqrt{53}}, \cos \theta = \frac 7{\sqrt{53}}} \end{aligned}

From ( 1 ) (1) : 4 53 x + 21 53 x = 15 25 53 x = 15 x = 3 53 5 \dfrac 4{\sqrt{53}}x + \dfrac {21}{\sqrt{53}}x = 15 \implies \dfrac {25}{\sqrt{53}}x = 15 \implies x = \dfrac {3 \sqrt{53}}5 . Therefore [ G H I J ] [ A B C D ] = x 2 6 2 = 53 100 \dfrac {[GHIJ]}{[ABCD]} = \dfrac {x^2}{6^2} = \dfrac {53}{100} and p + q = 53 + 100 = 153 p+q = 53 + 100 = \boxed{153} .

Hongqi Wang
Dec 26, 2020

Let A H I = θ , H I = 2 x \angle AHI = \theta, HI = 2x , then:

I J = 2 x × 6 ÷ 4 = 3 x 2 x sin θ + 3 x cos θ = 5 ( 1 ) 2 x cos θ + 3 x sin θ = 4 ( 2 ) 3 × ( 1 ) 2 × ( 2 ) : 5 x cos θ = 7 ( 3 ) 3 × ( 2 ) 2 × ( 1 ) : 5 x sin θ = 2 ( 4 ) ( 3 ) 2 + ( 4 ) 2 : x 2 = 53 25 S G H I J S A B C D = 2 x × 3 x 4 × 6 = x 2 4 = 53 100 IJ = 2x \times 6 \div 4 = 3x \\ 2x \sin \theta + 3x \cos \theta = 5 \quad (1) \\ 2x \cos \theta + 3x \sin \theta = 4 \quad (2) \\ 3 \times (1) - 2 \times (2): \\ \implies 5x \cos \theta = 7 \quad (3) \\ 3 \times (2) - 2 \times (1): \\ \implies 5x \sin \theta = 2 \quad (4) \\ (3)^2 + (4)^2 : \\ \implies x^2 = \dfrac {53}{25} \\ \dfrac {S_{GHIJ}}{S_{ABCD}} = \dfrac {2x \times 3x}{4 \times6} = \dfrac {x^2}{4} = \dfrac {53}{100}

David Vreken
Dec 27, 2020

Since G H I J GHIJ is similar to A B C D ABCD , let I J = H G = 3 k IJ = HG = 3k and H I = G J = 2 k HI = GJ = 2k . The ratio of the area of G H I J GHIJ to the area of A B C D ABCD is r = 2 k 3 k 4 6 = 1 4 k 2 r = \frac{2k \cdot 3k}{4 \cdot 6} = \frac{1}{4}k^2 .

By angle chasing the four right triangles are similar by AA similarity. Let θ = J I F = G J E = H G D = A H I \theta = \angle JIF = \angle GJE = \angle HGD = \angle AHI , then I F = G D = 3 k cos θ IF = GD = 3k \cos \theta , F J = D H = 3 k sin θ FJ = DH = 3k \sin \theta , H A = E J = 2 k cos θ HA = EJ = 2k \cos \theta , and A I = E G = 2 k sin θ AI = EG = 2k \sin \theta , so that from A I + I F = A F AI + IF = AF :

2 k sin θ + 3 k cos θ = 5 . . . ( 1 ) 2k \sin \theta + 3k \cos \theta = 5 \text{ } ... \text{ } (1)

and from D H + H A = D A DH + HA = DA :

3 k sin θ + 2 k cos θ = 4 . . . ( 2 ) 3k \sin \theta + 2k \cos \theta = 4 \text{ } ... \text{ } (2)

From ( 1 ) 2 + ( 2 ) 2 (1)^2 + (2)^2 we obtain 13 k 2 + 24 k 2 sin θ cos θ = 41 13k^2 + 24 k^2 \sin \theta \cos \theta = 41 , or

sin θ cos θ = 1 24 k 2 ( 41 13 k 2 ) . . . ( 3 ) \sin \theta \cos \theta = \frac{1}{24k^2}(41 - 13k^2)\text{ } ... \text{ } (3)

The area of G H I J GHIJ is the same as the difference between the area of A D E F ADEF and the four right triangles, so 4 5 ( 9 2 k 2 sin θ cos θ + 2 k 2 sin θ cos θ + 9 2 k 2 sin θ cos θ + 2 k 2 sin θ cos θ ) = 2 k 3 k 4 \cdot 5 - (\frac{9}{2}k^2\sin \theta \cos \theta + 2k^2 \sin \theta \cos \theta + \frac{9}{2}k^2\sin \theta \cos \theta + 2 k^2\sin \theta \cos \theta) = 2k \cdot 3k , or

20 13 k 2 sin θ cos θ = 6 k 2 . . . ( 4 ) 20 - 13k^2 \sin \theta \cos \theta = 6k^2\text{ } ... \text{ } (4)

Substituting ( 3 ) (3) into ( 4 ) (4) and simplifying gives k 2 = 53 25 k^2 = \frac{53}{25} .

Therefore, the ratio is r = 1 4 k 2 = 53 100 r = \frac{1}{4}k^2 = \frac{53}{100} , so p = 53 p = 53 , q = 100 q = 100 , and p + q = 153 p + q = \boxed{153} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...