Similar to equipotential?

Calculus Level 3

{ y u x + x u y = 0 u ( 0 , y ) = e y 2 \large \begin{cases} y\dfrac {\partial u}{\partial x} +x \dfrac {\partial u}{\partial y} =0 \\ u(0,y)=e^{-y^2} \end{cases}

Suppose a function u ( x , y ) u(x,y) satisfies the system of equations above, find u ( 1 , 2 ) u(1,2) .


The answer is 0.0498.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Nov 11, 2017

Since u ( 0 , y ) = e y 2 u(0,y) = e^{-y^2} , we can assume that u ( x , y ) = e v ( x ) y 2 u(x,y) = e^{v(x)-y^2} . Then we have:

y u x + x u y = 0 y d v d x e v ( x ) y 2 2 x y e v ( x ) y 2 = 0 d v d x = 2 x v ( x ) = 2 x d x = x 2 + C where C is the constant of integration. v ( 0 ) = 0 + C = 0 C = 0 v ( x ) = x 2 u ( x , y ) = e x 2 y 2 u ( 1 , 2 ) = e 1 2 2 2 = e 3 0.0498 \begin{aligned} y\frac {\partial u}{\partial x} + x \frac {\partial u}{\partial y} & = 0 \\ y\frac {dv}{dx} e^{v(x)-y^2} - 2xye^{v(x)-y^2} & = 0 \\ \implies \frac {dv}{dx} & = 2x \\ v(x) & = \int 2x \ dx = x^2 + \color{#3D99F6} C & \small \color{#3D99F6} \text{where }C \text{ is the constant of integration.} \\ v(0) & = 0+C = 0 & \small \color{#3D99F6} \implies C = 0 \\ \implies v(x) & = x^2 \\ \implies u(x,y) & = e^{x^2-y^2} \\ u(1,2) & = e^{1^2-2^2} \\ & = e^{-3} \approx \boxed{0.0498} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...