Simple Adding

Level 2

I have a favourite positive integer X.

When I add all the positive integers from 1 to X, I get a result of YYY, where Y is a positive integer from 0 to 9.

What is X?


The answer is 36.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Jordan Cahn
Nov 12, 2018

Note that Y Y Y = 111 Y YYY=111Y . The sum of all the integers from 1 1 to X X is X ( X + 1 ) 2 \frac{X(X+1)}{2} . Thus X ( X + 1 ) 2 = 111 Y X 2 + X = 222 Y X 2 + X 222 Y = 0 X = 1 ± 1 + 888 Y 2 \begin{aligned} \frac{X(X+1)}{2} &= 111Y \\ X^2 + X &= 222Y \\ X^2 + X - 222Y &= 0 \\ X&=\frac{-1\pm\sqrt{1+888Y}}{2} \end{aligned}

This can only be an integer if 1 + 888 Y 1+888Y is a perfect square. We know that Y Y is an integer with 1 Y 9 1\leq Y\leq 9 . Thus Y 1 + 888 Y 1 + 888 Y 1 889 889 2 1777 1777 3 2665 2665 4 3553 3553 5 4441 4441 6 5329 73 7 6217 6217 8 7105 7 145 9 7993 7993 \begin{array}{c|c|c} Y & 1+888Y & \sqrt{1+888Y} \\ \hline 1 & 889 & \sqrt{889} \\ 2 & 1777 & \sqrt{1777} \\ 3 & 2665 & \sqrt{2665} \\ 4 & 3553 & \sqrt{3553} \\ 5 & 4441 & \sqrt{4441} \\ 6 & 5329 & 73 \\ 7 & 6217 & \sqrt{6217} \\ 8 & 7105 & 7\sqrt{145} \\ 9 & 7993 & \sqrt{7993} \end{array} Thus Y = 6 Y=6 and X = 1 ± 73 2 X=\frac{-1\pm73}{2} . Taking the positive solution yields X = 72 2 = 36 X=\frac{72}{2} = \boxed{36} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...