Can We Compound The Range?

Geometry Level 2

sin x 1 cos x 1 | \sin x | \leq 1 \qquad \qquad | \cos x | \leq 1

We know that for all real numbers x x , the inequalities above are true. What is the smallest possible value of R R satisfying

sin x + cos x R ? | \sin x + \cos x | \leq R ?

0 0 1 1 2 2 3 3 2 \sqrt { 2 } 3 \sqrt { 3 }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Relevant wiki: Trigonometric Equations - R method

sin ( x ) + cos ( x ) = 2 sin ( x + π 4 ) \sin(x) + \cos(x) = \sqrt{2} \sin\left(x+\dfrac{\pi}{4}\right)
2 2 sin ( x + π 4 ) 2 -\sqrt{2} \leq\sqrt{2} \sin\left(x+\dfrac{\pi}{4}\right) \leq \sqrt{2}

But, if x = 3*pi/4 then cos(x) = -1/sqrt(2) and sin(x) = 1/sqrt(2) then R=0

Beshoy Nabil - 4 years, 10 months ago
Kexin Zheng
Jun 25, 2016

Since we want to maximize sin ( x ) + cos ( x ) \sin(x)+\cos(x) we can take its derivative and set it to zero to find the value of x. d d x ( sin ( x ) + cos ( x ) ) \frac{d}{dx}(\sin(x)+\cos(x)) = cos ( x ) sin ( x ) =\cos(x)-\sin(x) = 0 =0 cos ( x ) = sin ( x ) \cos(x)=\sin(x) x = π 4 x=\frac{\pi}{4} sin ( π 4 ) + cos ( π 4 ) \sin(\frac{\pi}{4})+\cos(\frac{\pi}{4}) = 2 2 + 2 2 =\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} = 2 =\boxed{\sqrt{2}}

Vitalii Feilo
Nov 18, 2016

1 = sin 2 x + cos 2 x = ( sin x + cos x ) 2 2 sin x cos x = ( sin x + cos x ) 2 sin 2 x 1=\sin^2x+\cos^2x=(\sin x+\cos x)^2-2\sin x\cos x=(\sin x+\cos x)^2-\sin 2x

( sin x + cos x ) 2 = 1 + sin 2 x 2 (\sin x+\cos x)^2=1+\sin 2x\leq2

sin x + cos x 2 |\sin x+\cos x|\leq\sqrt2

The equality holds when x = π 4 + π k x=\frac\pi4+\pi k , k Z k \in \mathbb{Z} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...