Simple addition and subtraction

Algebra Level 3

1 2 + 3 + 4 5 + 6 + 7 8 + 9 + 10 2000 + 2001 + 2002 2003 = ? \large1-2+3+4-5+6+7-8+9+10-\cdots-2000+2001+2002-2003 =\, ?


The answer is 667666.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Yong Hao Tham
Apr 30, 2016

For every 3 terms, there would be the following combination:

1-2 ... +3

4-5 ... +6

7-8 ... +9 and so on...

2001÷3=667

The whole expression will become:

-1(667)+(3×1+3×2+3×3+3×4+...+3×667)+2002-2003

=-677+3[ 667 ( 668 ) 2 \frac{667(668)}{2} ]+(-1)

= 667666 \boxed{667666}

Hung Woei Neoh
May 1, 2016

Notice that:

1 2 + 3 = 2 4 5 + 6 = 5 7 8 + 9 = 8 1999 2000 + 2001 = 2000 1-2+3=2\\ 4-5+6=5\\ 7-8+9=8\\ \ldots\\ 1999-2000+2001=2000

From here, we can know that the sum:

1 2 + 3 + 4 5 + 6 + + 1999 2000 + 2001 1-2+3+4-5+6+\ldots+1999-2000+2001

is actually the sum of the arithmetic progression:

2 + 5 + 8 + + 2000 2+5+8+\ldots+2000

with a = 2 , d = 3 a=2, d=3 and T n = 2000 T_n=2000

Use the formula to find the value of n n :

T n = a + ( n 1 ) ( d ) 2000 = 2 + ( n 1 ) ( 3 ) n = 667 T_n = a + (n-1)(d)\\ 2000 = 2 + (n-1)(3)\\ \implies n=667

Make use of the formula S n = n 2 ( a + T n ) S_n = \dfrac{n}{2}(a+T_n) to find the value of the expression:

1 2 + 3 + 4 5 + 6 + + 1999 2000 + 2001 + 2002 2003 = ( 2 + 5 + 8 + + 2000 ) + ( 2002 2003 ) = 667 2 ( 2 + 2000 ) 1 = ( 667 ) ( 1001 ) 1 = 667667 1 = 667666 1-2+3+4-5+6+\ldots+1999-2000+2001+2002-2003\\ =(2+5+8+\ldots+2000) +(2002-2003)\\ =\dfrac{667}{2}(2+2000) -1\\ =(667)(1001)-1\\ =667667-1\\ =\boxed{667666}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...