Simple algebra!

Algebra Level 1

{ x + y = 15 3 y x = 5 \begin{cases} \begin{array}{rcr} x + y &=& 15 \\ 3y - x &=& 5 \end{array} \end{cases}

If x x and y y satisfy the system of equations above, what is the value of x 2 + 2 y + 1 ? x^2 + 2y + 1?


The answer is 111.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sravanth C.
May 12, 2015

According to the question, x + y = 15 x+y=15 . . . . . . . ( i ) . . . . . . .(i)

3 y x = 5 3y-x=5 . . . . . . . ( i i ) . . . . . . .(ii)

Adding ( i i ) (ii) and ( i ) (i)

x + y + ( 3 y x ) = 15 + 5 x+y+(3y-x)=15+5

Or, 2 y = 10 2y=10 or, y = 5 y=\boxed{5}

Substituting, y = 5 y=\boxed{5} in ( i ) (i) , we get,

x + 5 = 15 x+5=15

Or, x = 10 x=\boxed{10}

Substituting, y = 5 y=\boxed{5} and x = 10 x=\boxed{10} in, x 2 + 2 y + 1 x^{2}+2y+1 we get,

Therefore, x 2 + 2 y + 1 = 1 0 2 + 2 ( 5 ) + 1 x^{2}+2y+1=10^{2}+2(5)+1

= 100 + 10 + 1 = 111 =100+10+1=\boxed{111}

you made a mistake in line 6

Iris B - 4 years, 7 months ago

Log in to reply

Thanks edited

Sravanth C. - 4 years, 7 months ago
Lew Sterling Jr
Jul 24, 2015

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...