Simple algebra Problem

Algebra Level 5

Given that x x and y y are positive real such that x + y = 1 x+y=1 , find the value of k k such that the maximum value of x 4 y + x y 4 { x }^{ 4 }y+x{ y }^{ 4 } is 1 k . \dfrac { 1 }{ k }.


  • This is not an original problem.
  • For more problems try my set .
6 0 1/16 12 13 20

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Akshay Sharma
Jan 15, 2016

Substituting x = s i n 2 u x={sin^2}u and y = c o s 2 u y={cos}^{2}u .WE will get maximum value equal to 6 6

From the question, we have x + y = 1 y = 1 x x+y=1\Rightarrow y=1-x . Substituting into the second expression, we get: x 4 y + x y 4 = x 4 ( 1 x ) + x ( 1 x ) 4 = 3 x 4 + 6 x 3 4 x 2 + x { x }^{ 4 }y+x{ y }^{ 4 }=x^{4}(1-x)+x(1-x)^{4}=-3x^{4}+6x^{3}-4x^{2}+x

Differentiating, we get d d x ( 3 x 4 + 6 x 3 4 x 2 + x ) = 12 x 3 + 18 x 2 8 x + 1 = 0 \frac{d}{dx}(-3x^{4}+6x^{3}-4x^{2}+x)=-12x^{3}+18x^{2}-8x+1=0

Solving the cubic equations, we have found 3 solutions for x x : x 1 = 1 2 , x 2 = 1 6 ( 3 3 ) , x 3 = 1 6 ( 3 + 3 ) x_{1}=\dfrac{1}{2}, x_{2}=\dfrac{1}{6}(3-\sqrt{3}), x_{3}=\dfrac{1}{6}(3+\sqrt{3})

Now, we can sub in each of the respective values of x x and we get the answer k = 12 k=12 .

A bit lengthier but nice solution

Akshay Sharma - 5 years, 5 months ago

Did the same way.

Niranjan Khanderia - 3 years, 3 months ago

If we use the value of x = 1/2, then y = 1/2 and xy^4 + yx^4 = 2(1/2)^5 = 2/32 = 1/16, so k = 16. See my report. Ed Gray

Edwin Gray - 2 years, 9 months ago

x 4 y + x y 4 = x y ( x 3 + y 3 ) = x y ( x + y ) ( x 2 + y 2 x y ) Given that x + y = 1 = x y ( 1 ) ( 1 2 x y x y ) Note that ( x + y ) 2 = x 2 + y 2 + 2 x y = x y 3 ( x y ) 2 = 3 ( ( x y ) 2 1 3 x y + 1 36 ) + 1 12 = 1 12 ( x y 1 6 ) 2 Note that ( x y 1 6 ) 2 0 1 12 \begin{aligned} x^4y + xy^4 & = xy(x^3+y^3) \\ & = xy{\color{#3D99F6}(x+y)}({\color{#D61F06}x^2+y^2}-xy) & \small \color{#3D99F6} \text{Given that }x+y = 1 \\ & = xy{\color{#3D99F6}(1)}({\color{#D61F06}1-2xy}-xy) & \small \color{#D61F06} \text{Note that }(x+y)^2 = x^2+y^2 + 2xy \\ & = xy - 3(xy)^2 \\ & = - 3\left((xy)^2-\frac 13xy + \frac 1{36}\right) + \frac 1{12} \\ & = \frac 1{12} - \color{#3D99F6}\left(xy - \frac 16\right)^2 & \small \color{#3D99F6} \text{Note that }\left(xy - \frac 16\right)^2 \ge 0 \\ & \le \frac 1{12} \end{aligned}

k = 12 \implies k = \boxed{12}

Darcy Carvalho
Jan 20, 2017

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...