Simple Algebraic Equation

Algebra Level 2

Find A + B A+B given that A A and B B are constants such that

2 x 9 x 2 x 6 = A x 3 + B x + 2 . \frac{2x-9}{x^2-x-6}=\frac{A}{x-3}+\frac{B}{x+2}.


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sharky Kesa
Jul 31, 2014

Simple.

x 2 x 6 = ( x 3 ) ( x + 2 ) x^2 - x - 6 = (x - 3)(x + 2)

This can make the question easier to solve.

2 x 9 x 2 x 6 = A x 3 + B x + 2 \dfrac {2x - 9}{x^2 - x - 6} = \dfrac {A}{x - 3} + \dfrac {B}{x + 2}

2 x 9 x 2 x 6 = A ( x + 2 ) x 2 x 6 + B ( x 3 ) x 2 x 6 \dfrac {2x - 9}{x^2 - x - 6} = \dfrac {A(x + 2)}{x^2 - x - 6} + \dfrac {B(x - 3)}{x^2 - x - 6}

2 x 9 = A x + 2 A + B x 3 A 2x - 9 = Ax + 2A + Bx - 3A

This equation can be transferred into 2 equations:

2 x = A x + B x . . . ( 1 ) 2x = Ax + Bx ... (1)

9 = 2 A 3 B . . . ( 2 ) -9 = 2A - 3B ... (2)

From the first equation, it is clear that the answer can be derived from it. Dividing both sides by x x yields

2 = A + B 2 = A + B

Hence, our answer is 2.

You can actually just see that since X is not a constant in this problem, the x value on both sides must be equal, so A x + B x = 2 x , ( A + B ) = 2 Ax+Bx=2x, (A+B)=2 . This is basically what you did, just a little quicker!

Nicolas Bryenton - 6 years, 10 months ago
Hassan Raza
Aug 1, 2014

2 x 9 x 2 x 6 = A ( x 3 ) + B ( x + 2 ) = > 2 x 9 = A ( x + 2 ) + B ( x 3 ) . . . . . . . . . . . . . . . . . . ( i ) P u t t x = 3 i n ( i ) 2 ( 3 ) 9 = A [ ( 3 ) + 2 ] + B [ ( 3 ) 3 ] o r 6 9 = 5 A + 0 o r 3 = 5 A = > A = 3 5 N o w P u t t x = 2 i n ( i ) 2 ( 2 ) 9 = A [ ( 2 ) + 2 ] + B [ ( 2 ) 3 ] o r 4 9 = 0 5 B o r 13 = 5 B = > B = 13 5 N o w " A + B " A + B = 3 5 + 13 5 = 3 + 13 5 = 10 5 o r A + B = 2 \qquad \frac { 2x-9 }{ { x }^{ 2 }-x-6 } =\frac { A }{ (x-3) } +\frac { B }{ (x+2) } \\ =>\quad 2x-9\quad =\quad A(x+2)+B(x-3)\quad ..................\quad (i)\\ Putt\quad \boxed { x=3 } \quad in\quad (i)\\ \qquad 2(3)-9\quad =\quad A[(3)+2]+B[(3)-3]\\ or\quad \quad \quad 6-9\quad =\quad 5A\quad +0\\ or\quad \quad \quad \quad -3\quad =\quad 5A\quad =>\quad \boxed { A=-\frac { 3 }{ 5 } } \\ Now\quad Putt\quad \boxed { x=-2 } \quad in\quad (i)\\ \qquad 2(-2)-9\quad =\quad A[(-2)+2]+B[(-2)-3]\\ or\quad \quad \quad -4-9\quad =\quad 0\quad -5B\\ or\quad \quad \quad \quad -13\quad =\quad -5B\quad =>\quad \boxed { B=\frac { 13 }{ 5 } } \\ Now\quad "A+B"\\ \qquad A+B=\quad -\frac { 3 }{ 5 } +\frac { 13 }{ 5 } \\ \qquad \qquad \quad =\quad \frac { -3+13 }{ 5 } \quad =\quad \frac { 10 }{ 5 } \\ or\quad \boxed { A+B=2 }

Did it the same way.

Abdur Rehman Zahid - 6 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...