Simple but nice

Calculus Level 1

F ( x ) = f ( x ) g ( x ) h ( x ) {F(x)} = {f(x)g(x)h(x)}

The above equation is true for all real x x , where f ( x ) f(x) , g ( x ) g(x) and h ( x ) h(x) are differentiable functions at some point a a .

Given F ( a ) = 21 F ( a ) , f ( a ) = 4 f ( a ) , g ( a ) = 7 g ( a ) , h ( a ) = k h ( a ) F '(a) = 21 F(a), f '(a) = 4f(a), g'(a) = -7g(a), h'(a) = kh(a) . Find k k .


The answer is 24.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Discussions for this problem are now closed

Pi Han Goh
Apr 8, 2015

We use logarithmic differentiation: take log to both sides of the equation, then differentiate them with respect to x x .

ln F ( x ) = ln ( f ( x ) ) + ln ( g ( x ) ) + ln ( h ( x ) ) F ( x ) F ( x ) = f ( x ) f ( x ) + g ( x ) g ( x ) + h ( x ) h ( x ) F ( a ) F ( a ) = f ( a ) f ( a ) + g ( a ) g ( a ) + h ( a ) h ( a ) 21 = 4 7 + k k = 24 \begin{aligned} \ln F(x) &=& \ln(f(x)) + \ln(g(x)) + \ln(h(x)) \\ \frac { F'(x) }{F(x) } &=& \frac { f'(x) }{f(x) } + \frac { g'(x) }{g(x) } + \frac { h'(x) }{h(x) } \\ \frac { F'(a) }{F(a) } &=& \frac { f'(a) }{f(a) } + \frac { g'(a) }{g(a) } + \frac { h'(a) }{h(a) } \\ 21 &=& 4 - 7 + k \\ k &=& \boxed{24} \end{aligned}

Pranjal Jain
Dec 12, 2014

( u v w ) = u v w + u v w + u v w (uvw)'=u'vw+uv'w+uvw'

F ( a ) = f ( a ) g ( a ) h ( a ) + f ( a ) g ( a ) h ( a ) + f ( a ) g ( a ) h ( a ) F'(a)=f'(a)g(a)h(a)+f(a)g'(a)h(a)+f(a)g(a)h'(a)

Substituting f ( a ) , g ( a ) , h ( a ) f'(a), g'(a), h'(a) ,

21 F ( a ) = f ( a ) g ( a ) h ( a ) [ 4 7 + h ] 21F(a)=f(a)g(a)h(a)[4-7+h] 21 = h 3 h = 24 21=h-3\Rightarrow h=24

Hitoshi Yamamoto
Dec 14, 2014

F(x) = f(x)g(x)h(x)

F'(x) = f'(x)g(x)h(x) + f(x).( g'(x)h(x) + g(x)h'(x) )

21F(x) = 4f(x)g(x)h(x) + f(x) ( -7g(x)h(x) + k.g(x)h(x) )

21F(x) = ( 4 - 7 + k ).f(x)g(x)h(x)

21F(x) = ( k - 3 )F(x)

k - 3 = 21

k = 24

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...