simple but >

Algebra Level 2

I f α a n d β a r e t h e r o o t s o f t h e e q u a t i o n x 2 + 3 x 4 = 0 , t h e n 1 α + 1 β i s e q u a l t o If\quad \alpha \quad and\quad \beta \quad are\quad the\quad roots\quad of\quad the\quad equation\quad { x }^{ 2 }\quad +\quad 3x\quad -\quad 4\quad =\quad 0,\quad then\quad \frac { 1 }{ \alpha } +\quad \frac { 1 }{ \beta } \quad is\quad equal\quad to

-3/4 -3/7 3/7 3/4

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Use Vieta's Formula.

exactly but dang it i pressed the negative sign

Mardokay Mosazghi - 6 years, 10 months ago

Log in to reply

Exactly what I did :p

Abdur Rehman Zahid - 6 years, 6 months ago

Log in to reply

Careful...

Ruilin Wang - 1 year, 10 months ago

You can simply use the method of middle term factorization to find out the roots ( 1 , ( 4 ) ) (1,(-4)) too!

Prasun Biswas - 6 years, 10 months ago

Why in negative, the answer is wrong?

Felix HG - 6 years, 5 months ago
Rama Devi
May 26, 2015

The roots are 1 and -4.Therefore the required answer is 3/4.

Nikhil Raj
Jun 1, 2017

Polynomial x 2 + 3 x 4 By vieta’s formula, α + β = b a = 3 α β = c a = 4 N o w , 1 α + 1 β = α + β α β = 3 4 = 3 4 \rightarrow x^2 + 3x - 4 \\ {\text{By vieta's formula,}} \begin{aligned} \alpha + \beta = \dfrac{-b}{a} = -3 \\ \alpha \cdot \beta = \frac{c}{a} = - 4 \end{aligned} \\ Now, \dfrac{1}{\alpha} +\dfrac{1}{\beta} = \dfrac{\alpha +\beta}{\alpha \cdot \beta} = \dfrac{-3}{-4} = \color{#20A900}{\boxed{\dfrac{3}{4}}}

We know that

x 2 + 3 x 4 = ( x + 4 ) ( x 1 ) x^2 + 3x - 4 = \left( x + 4 \right) \left( x - 1 \right)

So the solutions are x = 4 x= -4 and x = 1 x= 1 thus we know 1 4 + 1 1 = 1 + 4 4 = 3 4 -\frac{1}{4} + \frac{1}{1}= \frac{-1 + 4}{4}= \frac{3}{4}

Please edit: x-4 ?!!

Ruilin Wang - 1 year, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...