∫ 0 1 ( x + 1 ) 3 + 6 e x + 3 x + 5 x 3 d x
If the value of the integral above can be expressed as ln ( B e + C A e ) for positive integers A , B and C , find the minimum value of A + B + C .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
What motivates you to convert the integrand to the form of f ( x ) f ′ ( x ) ?
Brilliant solution! +1
Which book is this from?
yeah which book? @Satyajit Mohanty
Problem Loading...
Note Loading...
Set Loading...
Let us find the indefinite integral of I = ∫ ( x + 1 ) 3 + 6 e x + 3 x + 5 x 3 d x = ?
Put x + 1 = u ; d x = d u , so
I = ∫ u 3 + 6 e u − 1 + 3 ( u − 1 ) + 5 ( u − 1 ) 3 d x
⟹ I = ∫ u 3 + 6 e u − 1 + 3 u + 2 u 3 − 3 u 2 + 3 u − 1 d x
⟹ I = ∫ ( u 3 + 6 e u − 1 + 3 u + 2 u 3 + 6 e u − 1 + 3 u + 2 − u 3 + 6 e u − 1 + 3 u + 2 3 u 2 + 6 e u − 1 + 3 ) d x
⟹ I = ∫ ( 1 − u 3 + 6 e u − 1 + 3 u + 2 ( u 3 + 6 e u − 1 + 3 u + 2 ) ′ ) d x
⟹ I = u − ln ( u 3 + 3 u + 6 e u − 1 + 2 ) + C
⟹ I = x − ln ( x 3 + 3 x 2 + 6 x + 6 e x + 6 ) + C
And substituting the limits gives our answer to be ln ( 8 + 3 e 6 e ) .