Simple Definite Integral #1

Calculus Level 5

0 1 x 3 ( x + 1 ) 3 + 6 e x + 3 x + 5 d x \large{\int_0^1 \dfrac{x^3}{(x+1)^3 + 6e^x + 3x+5}\, dx }

If the value of the integral above can be expressed as ln ( A e B e + C ) \ln\left( \frac {Ae}{Be+C} \right) for positive integers A , B A,B and C C , find the minimum value of A + B + C A+B+C .


The answer is 17.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Satyajit Mohanty
Jul 22, 2015

Let us find the indefinite integral of I = x 3 ( x + 1 ) 3 + 6 e x + 3 x + 5 d x = ? I = \large{\int \dfrac{x^3}{(x+1)^3 + 6e^x + 3x+5}dx = \ ?}

Put x + 1 = u ; d x = d u x+1 = u; dx=du , so

I = ( u 1 ) 3 u 3 + 6 e u 1 + 3 ( u 1 ) + 5 d x I = \int \dfrac{(u-1)^3}{u^3 + 6e^{u-1} + 3(u-1)+5}dx

I = u 3 3 u 2 + 3 u 1 u 3 + 6 e u 1 + 3 u + 2 d x \Longrightarrow I = \int \dfrac{u^3 - 3u^2 + 3u - 1}{u^3 + 6e^{u-1} + 3u + 2}dx

I = ( u 3 + 6 e u 1 + 3 u + 2 u 3 + 6 e u 1 + 3 u + 2 3 u 2 + 6 e u 1 + 3 u 3 + 6 e u 1 + 3 u + 2 ) d x \Longrightarrow I = \int \left(\dfrac{u^3 + 6e^{u-1} + 3u + 2}{u^3 + 6e^{u-1} + 3u + 2} - \dfrac{3u^2 + 6e^{u-1} + 3}{u^3 + 6e^{u-1} + 3u + 2} \right) dx

I = ( 1 ( u 3 + 6 e u 1 + 3 u + 2 ) u 3 + 6 e u 1 + 3 u + 2 ) d x \Longrightarrow I = \int \left(1- \dfrac{(u^3 + 6e^{u-1} + 3u + 2)'}{u^3 + 6e^{u-1} + 3u + 2}\right) dx

I = u ln ( u 3 + 3 u + 6 e u 1 + 2 ) + C \Longrightarrow I= u - \ln(u^3 + 3u + 6e^{u-1} +2) + C

I = x ln ( x 3 + 3 x 2 + 6 x + 6 e x + 6 ) + C \Longrightarrow I= x - \ln(x^3 + 3x^2 + 6x + 6e^x + 6) + C

And substituting the limits gives our answer to be ln ( 6 e 8 + 3 e ) \boxed{\ln \left(\dfrac{6e}{8+3e}\right)} .

Moderator note:

What motivates you to convert the integrand to the form of f ( x ) f ( x ) \frac{f'(x)}{f(x)} ?

Brilliant solution! +1

Kartik Sharma - 5 years, 9 months ago

Which book is this from?

Rishabh Deep Singh - 5 years, 2 months ago

yeah which book? @Satyajit Mohanty

Kaustubh Miglani - 4 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...