Simple Definite Integral

Calculus Level 2

Evaluate 0 1 1 x ( 1 + x ) x + x 2 + x 3 d x \int_{0}^{1} \frac{1-x}{(1+x)\sqrt{x+x^2+x^3}}dx
Please don't use any type of mathematical tool.

Thanks in advance if your are posting the solution.


The answer is 1.0472.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Vilakshan Gupta
Jul 11, 2020

I am presenting 2 approaches to this problem, it's upto the reader which one to follow.


Approach 1

Let I = 0 1 1 x ( x + 1 ) x 3 + x 2 + x d x \displaystyle \mathcal{I}=\int_{0}^{1}\frac{1-x}{\left(x+1\right)\sqrt{x^{3}+x^{2}+x}}~\mathrm{d}x . Now multilplying up and down by x + 1 x+1 and dividing by x 2 x^2 results in I = 0 1 1 1 x 2 ( x + 1 x + 2 ) x + 1 x + 1 d x \mathcal{I}=-\int_{0}^{1}\frac{1-\frac{1}{x^{2}}}{\left(x+\frac{1}{x}+2\right)\sqrt{x+\frac{1}{x}+1}}~\mathrm{d}x

Now letting u = x + 1 x u=x+\frac{1}{x} transforms the integral to I = 2 d u ( u + 2 ) u + 1 \mathcal{I}=\int_{2}^{\infty}\frac{\mathrm{d}u}{\left(u+2\right)\sqrt{u+1}}

Now the substitution u + 1 = t 2 u+1=t^2 makes I = 2 3 d t 1 + t 2 \mathcal{I}=2\int_{\sqrt{3}}^{\infty}\frac{\mathrm{d}t}{1+t^{2}} which is simply 2 ( tan 1 tan 1 3 ) = 2 ( π 2 π 3 ) = π 3 2(\tan^{-1}{\infty}-\tan^{-1}{\sqrt{3}})=2\left(\dfrac{\pi}{2}-\dfrac{\pi}{3}\right)=\boxed{\dfrac{\pi}{3}} .


Approach 2

Let x = tan 2 θ x=\tan^2\theta , and therefore d x = 2 tan θ sec 2 θ \mathrm{d}x=2\tan\theta\sec^2\theta , we get

I = 2 0 π 4 1 tan 2 θ 1 + tan 2 θ + tan 4 θ d θ = 2 0 π 4 cos 2 θ sin 4 θ + sin 2 θ cos 2 θ + cos 4 θ d θ = 2 0 π 4 cos 2 θ ( sin 2 θ + cos 2 θ ) 2 sin 2 θ cos 2 θ d θ = 2 0 π 4 cos 2 θ 1 ( sin 2 θ 2 ) 2 d θ = 2 0 1 2 d u 1 u 2 via sin 2 θ 2 = u = 2 sin 1 u ] 0 1 2 = 2 sin 1 ( 1 2 ) = π 3 \begin{aligned} \mathcal{I} &=2\int_{0}^{\frac{\pi}{4}}\frac{1-\tan^{2}\theta}{\sqrt{1+\tan^{2}\theta+\tan^{4}\theta}}~\mathrm{d}\theta \\ &=2\int_{0}^{\frac{\pi}{4}}\frac{\cos2\theta}{\sqrt{\sin^{4}\theta+\sin^{2}\theta\cos^{2}\theta+\cos^{4}\theta}}~\mathrm{d}\theta \\ &=2\int_{0}^{\frac{\pi}{4}}\frac{\cos2\theta}{\sqrt{\left(\sin^{2}\theta+\cos^{2}\theta\right)^{2}-\sin^{2}\theta\cos^{2}\theta}}~\mathrm{d}\theta \\ &=2\int_{0}^{\frac{\pi}{4}}\frac{\cos2\theta}{\sqrt{1-\left(\dfrac{\sin2\theta}{2}\right)^{2}}} \, \mathrm{d}\theta \\ &=2\int_{0}^{\frac{1}{2}}\frac{\mathrm{d}u}{\sqrt{1-u^2}} \, ~\text{via}~\frac{\sin2\theta}{2}=u \\ &=2\sin^{-1}u \bigr]_{0}^{\frac{1}{2}} \\ &=2\sin^{-1}\left(\frac{1}{2}\right) \\ &=\boxed{\dfrac{\pi}{3}} \end{aligned}

@Vilakshan Gupta Very nice and Thanks for the solution (Upvoted!)

Log in to reply

You're welcome :)

Vilakshan Gupta - 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...