Equations-EMT

Algebra Level 2

{ e m t = e m t + m t e 1 e m t = e m t + t m e 1 ln ( e m t ) = 1 \large \begin{cases} e^{mt} = emt+mt^e-1 \\ e^{mt} = emt+tm^e-1 \\ \ln(emt)=1 \end{cases}

Clarification : e 2.71828 e \approx 2.71828 denotes the Euler's number .

Let m m and t t be positive real numbers satisfying the system of equations above, find m + t m+t .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tommy Li
Dec 22, 2016

{ e m t = e m t + m t e 1 e m t = e m t + t m e 1 ln ( e m t ) = 1 \large \begin{cases} e^{mt} = emt+mt^e-1 \\ e^{mt} = emt+tm^e-1 \\ \ln(emt)=1 \end{cases}

{ m t e = t m e e m t = e \large \begin{cases} mt^e=tm^e \\ emt= e \end{cases}

{ ln ( m ) + e ln ( t ) = ln ( t ) + e ln ( m ) m t = 1 \large \begin{cases} \ln(m) +e\ln(t) = \ln(t) +e\ln(m) \\ mt= 1 \end{cases}

{ e ln ( t ) e ln ( m ) = ln ( t ) ln ( m ) m t = 1 \large \begin{cases} e\ln(t) -e\ln(m) = \ln(t) -\ln(m) \\ mt= 1 \end{cases}

{ ( e 1 ) ( ln ( t ) ln ( m ) ) = 0 m t = 1 \large \begin{cases} (e-1)(\ln(t) -\ln(m)) =0 \\ mt= 1 \end{cases}

{ ln ( t ) = ln ( m ) m t = 1 \large \begin{cases} \ln(t) =\ln(m) \\ mt= 1 \end{cases}

{ m = t t 2 = 1 \large \begin{cases} m=t \\ t^2 = 1 \end{cases}

{ m = 1 t = 1 \large \begin{cases} m = 1 \\ t = 1 \end{cases} or { m = 1 t = 1 \large \begin{cases} m = -1 \\ t = -1 \end{cases} (rej.)

m + t = 1 + 1 = 2 \Rightarrow m + t = 1+1 = 2

Who can rate the level of this problem ? Please rate it .

Who can rate the level of this problem ? Please rate it .

Tommy Li - 4 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...