simple factorisation

Algebra Level 3

if f ( x ) = 6 4 x 6 4 x f(x)= 64^{x}-64^{-x} and it can be factorised into the form f ( x ) = ( a x + a x ) ( ( a x + a x ) 2 + c ) , f(x)=(a^{x}+a^{-x})((a^{x}+a^{-x})^{2}+c),

find a a .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

The factor form of f(x) in the question is wrong.

Nishee Nattraj
May 30, 2014

A^3-B^3=(A-B)(A^2+AB+B^2) f(x)= 4^3x - 4^-3x =(4^x + 4^-x)(4^2x + 4^x * 4^-x + 4^-2x) = (4^x + 4^-x)(4^2x + 1 + 4^-2x) = (4^x + 4^-x)(4^2x + 2 + 4^-2x -1) = (4^x + 4^-x)((4^x + 4^-x)^2 -1) thus a=4 c=-1

Your first factor is ( 4 x + 4 x ) \left(4^{x} + 4^{-x}\right) . It should be ( 4 x 4 x ) \left(4^{x} - 4^{-x}\right) since you specified that A 3 B 3 = ( A B ) ( A 2 + A B + B 2 ) A^3 - B^3 = (A-B)\left(A^2 + AB + B^2\right)

Also, in your question, it seems f ( x ) f(x) should be ( a x a x ) ( ( a x + a x ) 2 + c ) \left(a^x -a^{-x}\right)\left(\left(a^x +a^{-x}\right)^2 + c\right)

Esrael Santillan - 6 years, 10 months ago

Log in to reply

Yes, I agree with you

Raushan Sharma - 5 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...