Simple Harmonic Motion#0

Please enter the correct option number as the answer.


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Steven Chase
Feb 19, 2018

Moment arm: L 2 + x \frac{L}{2} + x

Force magnitude for small oscillations:

F = k ( L 2 + x ) θ F = k \, \Big(\frac{L}{2} + x \Big) \, \theta

Torque:

τ = k ( L 2 + x ) 2 θ \tau = k \, \Big(\frac{L}{2} + x \Big)^2 \, \theta

Moment of inertia:

I = M L 2 12 + M x 2 I = \frac{M L^2}{12} + M x^2

Rotational acceleration:
k ( L 2 + x ) 2 θ = ( M L 2 12 + M x 2 ) θ ¨ θ ¨ = k ( L 2 + x ) 2 M L 2 12 + M x 2 θ ω 2 = k ( L 2 + x ) 2 M L 2 12 + M x 2 k \, \Big(\frac{L}{2} + x \Big)^2 \, \theta = \Big(\frac{M L^2}{12} + M x^2 \Big) \, \ddot{\theta} \\ \ddot{\theta} = \frac{k \, \Big(\frac{L}{2} + x \Big)^2}{\frac{M L^2}{12} + M x^2 } \, \theta \\ \omega^2 = \frac{k \, \Big(\frac{L}{2} + x \Big)^2}{\frac{M L^2}{12} + M x^2 }

Differentiate to maximize the angular frequency:

d ω 2 d x = 0 ( M L 2 12 + M x 2 ) 2 k ( L 2 + x ) = 2 M k x ( L 2 + x ) 2 M L 2 12 + M x 2 = M x ( L 2 + x ) M L 2 12 = M x L 2 x = L 6 \frac{d \, \omega^2}{d \, x} = 0 \\ \implies \Big(\frac{M L^2}{12} + M x^2 \Big) 2k \, \Big(\frac{L}{2} + x \Big) = 2 M k x \, \Big(\frac{L}{2} + x \Big)^2 \\ \frac{M L^2}{12} + M x^2 = M x \, \Big(\frac{L}{2} + x \Big) \\ \frac{M L^2}{12} = \frac{M x L}{2} \\ x = \frac{L}{6}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...